SEARCH

SEARCH BY CITATION

References

  • [1]
    P.J. Armstrong and C.O. Frederick, A Mathematical Representation of the Multiaxial Bauschinger Effect, CEGB Report RD/B/N 731 (Berkeley Nuclear Laboratories, Berkeley, 1966).
  • [2]
    O.T. Bruhns, Advanced Mechanics of Solids (Springer, Berlin, Heidelberg, New York, 2003).
  • [3]
    O.T. Bruhns, Some Remarks on the History of Plasticity – Heinrich Hencky, a Pioneer of the Early Years. In: The History of Theoretical, Material and Computational Mechanics, edited by E. Stein (Springer, Berlin, Heidelberg, New York, 2014).
  • [4]
    O.T. Bruhns and T. Lehmann, Optimum Deformation Rate in Large Inelastic Deformations. In: Metal Forming Plasticity, edited by H. Lippmann (Springer, Berlin, Heidelberg, New York, 1979), pp. 120–138.
  • [5]
    B. Bernstein, Hypo-elasticity and elasticity, Arch. Ration. Mech. Anal. 6, 89104 (1960).
  • [6]
    A. Bertram, Elasticity and Plasticity of Large Deformations (Springer, Berlin, Heidelberg, New York, 2005).
  • [7]
    C. Carathéodory and E. Schmidt, Über die Hencky-Prandtlschen Kurven, Z. Angew. Math. Mech. 3, 468475 (1923).
  • [8]
    D.E. Carlson and A. Hoger, The derivative of a tensor-valued function of a tensor, Q. Appl. Math. 44, 409423 (1986).
  • [9]
    C.A. Coulomb, Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, Mém Math. Phys. 7, 343382 (1773).
  • [10]
    B.A. Cotter and R.S. Rivlin, Tensors associated with time-dependent stress, Q. Appl. Math. 13, 177182 (1955).
  • [11]
    J.K. Dienes, On the analysis of rotation and stress rate in deforming bodies, Acta Mech. 32, 217232 (1979).
  • [12]
    H. Fromm, Stoffgesetze des isotropen Kontinuums, insbesondere bei zähplastischem Verhalten, Ing.-Arch. 4, 432466 (1933).
  • [13]
    J.E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite deformations, J. Appl. Phys. 51, 51115115 (1980).
  • [14]
    H. Geiringer, Fondements mathématiques de la théorie des corps plastiques isotropes, Mém. Sci. Math., Gauthier-Villars, Paris 86, 1922 (1937).
  • [15]
    H. Geiringer and W. Prager, Mechanik isotroper Körper im plastischen Zustand, Ergebnisse der exakten Naturwissenschaften 13, 310363 (1934).
  • [16]
    A.E. Green, Hypo-elasticity and plasticity, Proc. R. Soc. Lond. A 234, 4659 (1956).
  • [17]
    A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Ration. Mech. Anal. 18, 251281 (1965); Corrigenda Arch. Ration. Mech. Anal. 19, 408 (1965).
  • [18]
    A.E. Green and B.C. McInnis, Generalized hypo-elasticity, Proc. R. Soc. Edinb. A 67, 220230 (1967).
  • [19]
    M.E. Gurtin and K. Spear, On the relationship between the logarithmic strain rate and the stretching tensor, Int. J. Solids Struct. 19, 437444 (1983).
  • [20]
    A. Haar and T. von Kármán, Zur Theorie der Spannungszustände in plastischen und sandartigen Medien, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 204218 (1909).
  • [21]
    H. Hencky, Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern, Z. Angew. Math. Mech. 3, 241251 (1923).
  • [22]
    H. Hencky, Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen, Z. Angew. Math. Mech. 4, 323334 (1924).
  • [23]
    H. Hencky, Die Bewegungsgleichungen beim nichtstationären Fließen plastischer Massen, Z. Angew. Math. Mech. 5, 144146 (1925).
  • [24]
    H. Hencky, Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form, Ann. Phys. 5, 617630 (1929).
  • [25]
    R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford (1950).
  • [26]
    R. Hill, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids 7, 209225 (1959).
  • [27]
    R. Hill, On constitutive inequalities for simple materials, J. Mech. Phys. Solids 16, 229242, 315–322 (1968).
  • [28]
    R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain, Proc. R. Soc. Lond. A 314, 457472 (1970).
  • [29]
    R. Hill, Aspects of invariance in solid mechanics, Adv. Appl. Mech. 18, 175 (1978).
  • [30]
    A. Hoger, The material time derivative of logarithmic strain, Int. J. Solids Struct. 22, 10191032 (1986).
  • [31]
    A. Hoger, The stress conjugate to logarithmic strain, Int. J. Solids Struct. 23, 16451656 (1987).
  • [32]
    K. Hohenemser, Elastisch-bildsame Verformungen statisch unbestimmter Stabwerke, Ing.-Archiv 2, 472482 (1931).
  • [33]
    K. Hohenemser and W. Prager, Beitrag zur Mechanik des bildsamen Verhaltens von Flußstahl, Z. Angew. Math. Mech. 12, 114 (1932).
  • [34]
    A.A. Ilyushin, Relation between the theory of Saint Venant-Lévy-Mises and the theory of small elastic-plastic deformations (in Russian). Prikladnaya Mat. i Mekh. 9, 207218 (1945).
  • [35]
    G. Jaumann, Geschlossenes System physikalischer und chemischer Differential-gesetze, Sitzber. Akad. Wiss. Wien, Abt. IIa 120, 385530 (1911).
  • [36]
    A.S. Khan and S.J. Huang, Continuum Theory of Plasticity (John Wiley & Sons, New York, 1995).
  • [37]
    M. Kleiber, On errors inherent in commonly accepted rate forms of the elastic constitutive law, Arch. Mech. 38, 271279 (1986).
  • [38]
    T. Lehmann, Anisotrope plastische Formänderungen, Romanian J. Techn. Sci. Appl. Mech. 17, 10771086 (1972).
  • [39]
    T. Lehmann, Z.H. Guo, and H.Y. Liang, The conjugacy between Cauchy stress and logarithm of the left stretch tensor, Eur. J. Mech. A/Solids 10, 395404 (1991).
  • [40]
    T. Lehmann and H.Y. Liang, The stress conjugate to logarithmic strain ln V, Z. Angew. Math. Mech. 73, 357363 (1993).
  • [41]
    M. Lévy, Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état, C. R. Acad. Sci., Paris 70, 13231325 (1870).
  • [42]
    R.C. Lin, Numerical study of consistency of rate constitutive equations with elasticity at finite deformation, Int. J. Numer. Meth. Engng. 55, 10531077 (2002).
  • [43]
    R.C. Lin, U. Schomburg, and T. Kletschkowski, Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations, Eur. J. Mech. A/Solids 22, 443461 (2003).
  • [44]
    J. Lubliner, Plasticity Theory (Macmillan Publ. Comp., New York, 1990).
  • [45]
    P. Ludwik, Elemente der technologischen Mechanik (Springer, Berlin, 1909).
  • [46]
    D.B. Macvean, Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren, Z. Angew. Math. Phys. (ZAMP) 19, 157185 (1968).
  • [47]
    J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, Englewood Cliffs, 1983).
  • [48]
    E. Melan, Zur Plastizität des räumlichen Kontinuums, Ing.-Archiv 9, 116126 (1938).
  • [49]
    A. Meyers, H. Xiao, and O.T. Bruhns, Elastic stress ratchetting and corotational stress rates, Techn. Mech. 23, 92102 (2003).
  • [50]
    A. Meyers, H. Xiao, and O.T. Bruhns, Choice of objective rate in single parameter hypoelastic deformation cycles, Comp. Struct. 84, 11341140 (2006).
  • [51]
    R. von Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 582592 (1913).
  • [52]
    R. von Mises, Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech. 8, 161185 (1928).
  • [53]
    A. Nádai, Versuche über die plastischen Formänderungen von keilförmigen Körpern aus Flußeisen, Z. Angew. Math. Mech. 1, 2028 (1921).
  • [54]
    A. Nádai, Plasticity, a Mechanics of the Plastic State of Matter (McGraw-Hill, New York, 1931).
  • [55]
    P.M. Naghdi, A critical review of the state of finite plasticity, Z. Angew. Math. Phys. (ZAMP) 41, 315394 (1990).
  • [56]
    J.C. Nagtegaal and J.E. de Jong, Some Aspects of Non-Isotropic Workhardening in Finite Strain Plasticity. In: Plasticity of Metals at Finite Strain, Theory, Computation and Experiment, edited by E. H. Lee and R. L. Mallett (Stanford University, Stanford, 1982), pp. 65–106.
  • [57]
    L. Navier, Sur les lois des mouvements des fluides, en ayant égard à l'adhésion des molécules, Ann. Chimie 19, 244260 (1821).
  • [58]
    W. Noll, On the continuity of the solid and fluid states, J. Ration. Mech. Anal. 4, 381 (1955).
  • [59]
    D. Nouailhas, J.L. Chaboche, S. Savalle, and G. Cailletaud, On the constitutive equations for cyclic plasticity under nonproportional loading, Int. J. Plast. 1, 317330 (1985).
  • [60]
    F.K.G. Odqvist, Die Verfestigung von flußeisenähnlichen Körpern, Z. Angew. Math. Mech. 13, 360363 (1933).
  • [61]
    R.W. Ogden, Nonlinear Elastic Deformations (Ellis Harwood, Chichester, 1984).
  • [62]
    J.G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A 200, 523541 (1950).
  • [63]
    S.D. Poisson, Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides, J. École Poly. 13, (1831).
  • [64]
    W. Prager, Der Einfluß der Verformung auf die Fließbedingung zähplastischer Körper, Z. Angew. Math. Mech. 15, 7680 (1935).
  • [65]
    W. Prager, Strain hardening under combined stresses, J. Appl. Phys. 16, 837840 (1945).
  • [66]
    W. Prager, Theory of plastic flow versus theory of plastic deformation, J. Appl. Phys. 19, 540543 (1948).
  • [67]
    W. Prager, Recent developments in the mathematical theory of plasticity, J. Appl. Phys. 20, 235241 (1949).
  • [68]
    W. Prager, A new method of analyzing stresses and strains in work-hardening plastic solids, ASME J. Appl. Mech. 78, 493496 (1956); ASME J. Appl. Mech. 79, 481–484 (1957).
  • [69]
    W. Prager, An elementary discussion of definitions of stress rate, Q. Appl. Math. 18, 403407 (1960/61)
  • [70]
    W. Prager, Introduction to Mechanics of Continua (Ginn and Company, Boston, 1961).
  • [71]
    L. Prandtl, Spannungsverteilung in plastischen Körpern, Proc. 1st Int. Congr. Appl. Mech. (Delft), 4346 (1924).
  • [72]
    L. Prandtl, Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden, Z. Angew. Math. Mech. 1, 1520 (1921).
  • [73]
    L. Prandtl, Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht, Z. Angew. Math. Mech. 3, 401406 (1923).
  • [74]
    W.D. Reinhardt and R.N. Dubey, Eulerian strain-rate as a rate of logarithmic strain, Mech. Res. Commun. 22, 165170 (1995).
  • [75]
    W.D. Reinhardt and R.N. Dubey, Coordinate-independent representation of spin tensors in continuum mechanics, J. Elast. 42, 133144 (1996).
  • [76]
    A. Reuss, Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie, Z. Angew. Math. Mech. 10, 266274 (1930).
  • [77]
    A. Reuss, Fließpotential oder Gleitebenen? Z. Angew. Math. Mech. 12, 1524 (1932).
  • [78]
    A. Reuss, Vereinfachte Berechnung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung, Z. Angew. Math. Mech. 13, 356360 (1933).
  • [79]
    J.R. Rice, Continuum Mechanics and Thermodynamics of Plasticity in Relation to Micro-Scale Deformation Mechanism. In: Constitutive Equations in Plasticity, edited by A. S. Argon (MIT Press, Cambridge, 1975), pp. 21–79.
  • [80]
    R.S. Rivlin and J.L. Ericksen, Stress-deformation relations for isotropic materials, J. Ration. Mech. Anal. 4, 323425 (1955).
  • [81]
    B. de Saint-Venant, Note à joindre au mémoire sur la dynamique des fluides, présenté le 14 avril 1834, C.R. Acad. Sci., Paris 17, 12401243 (1843).
  • [82]
    B. de Saint-Venant, Sur l'établissement des équations des mouvements intérieurs operes dans les corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état, C.R. Acad. Sci., Paris 70, 473480 (1870).
  • [83]
    R. Schmidt, Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet, Ing.-Archiv 3, 216235 (1932).
  • [84]
    J.C. Simó and T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998).
  • [85]
    J.C. Simo and K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. Methods Appl. Mech. Eng. 46, 201215 (1984).
  • [86]
    R. Sowerby and E. Chu, Rotations, stress rates and strain measures in homogeneous deformation processes, Int. J. Solids Struct. 20, 10371048 (1984).
  • [87]
    G.G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambr. Philos. Soc. 8, 287319 (1845).
  • [88]
    L. Szabó and M. Balla, Comparison of some stress rates, Int. J. Solids Struct. 25, 279297 (1989).
  • [89]
    T.Y. Thomas, On the structure of the stress-strain relations, Proc. Natl. Acad. Sci., Eng. 41, 716720 (1955).
  • [90]
    T.Y. Thomas, Kinematically preferred co-ordinate systems, Proc. Natl. Acad. Sci., Math. 41, 762770 (1955).
  • [91]
    H. Tresca, Mémoire sur l'écoulement des corps solides soumis à des fortes pressions, C.R. Acad. Sci. Paris 59, 754758 (1864).
  • [92]
    H. Tresca, Mémoire sur l'écoulement des corps solides, Mém. Pres. Par. Div. Sav. 18, 733799 (1868).
  • [93]
    C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, J. Ration. Mech. Anal. 1, 125300 (1952); J. Ration. Mech. Anal. 2, 593–616 (1953).
  • [94]
    C. Truesdell, The simplest rate theory of pure elasticity, Commun. Pure Appl. Math. 8, 123132 (1955).
  • [95]
    C. Truesdell, Hypo-elasticity, J. Ration. Mech. Anal. 4, 83133 (1955).
  • [96]
    H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain, Int. J. Solids Struct. 32, 33273340 (1995).
  • [97]
    H. Xiao, O.T. Bruhns, and A. Meyers, A New Aspect in the Kinematics of Large Deformations. In: Plasticity and Impact Mechanics, edited by N. K. Gupta (New Age Internat. Ltd., New Delhi, 1997), pp. 100–109,
  • [98]
    H. Xiao, O.T. Bruhns, and A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mech. 124, 89105 (1997).
  • [99]
    H. Xiao, O.T. Bruhns, and A. Meyers, Hypo-elasticity model based upon the logarithmic stress rate, J. Elasticity 47, 5168 (1997).
  • [100]
    H. Xiao, O.T. Bruhns, and A.T.M. Meyers, Strain rates and material spins, J. Elasticity 52, 141 (1998).
  • [101]
    H. Xiao, O.T. Bruhns, and A. Meyers, Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures, Arch. Mech. 50, 10151045 (1998).
  • [102]
    H. Xiao, O.T. Bruhns, and A. Meyers, On objective corotational rates and their defining spin tensors, Int. J. Solids Struct. 35, 40014014 (1998).
  • [103]
    H. Xiao, O.T. Bruhns, and A. Meyers, The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proc. R. Soc. Lond. A 456, 18651882 (2000).
  • [104]
    H. Xiao, O.T. Bruhns, and A. Meyers, New results for the spin of the Eulerian triad and the logarithmic spin and rate, Acta Mech. 155, 95109 (2002).
  • [105]
    S. Zaremba, Sur une forme perfectionnée de la théorie de la relaxation, Bull. Int. Acad. Sci. Cracovie 595614 (1903).
  • [106]
    P.A. Zhilin, H. Altenbach, E.A. Ivanova, and A. Krivtsov, Material Strain tensors. In: Generalized Continua as Models for Materials, edited by H. Altenbach et al. (Springer, Berlin, Heidelberg, New York, 2013).
  • [107]
    H. Ziegler, A modification of Prager's hardening rule, Q. Appl. Math. 17, 5565 (1959).