• reproductive endocrinology;
  • delphinidae;
  • luteinizing hormone;
  • follicle-stimulating hormone


To increase the basic understanding of killer whale (Orcinus orca) reproductive physiology necessary for the development of artificial breeding programs, we utilized radioimmunoassays (RIA) to detect urinary immunoreactive steroid metabolites (pregnanediol-3α-glucuronide [PdG] and estrone-conjugates [EC]) and gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone [FSH]) in urine samples from six female killer whales. Urine samples were collected from the whales by voluntary presentation behavior over a 2- to 4-year period. All urinary hormone values were corrected for intersample urine concentration variations by indexing with creatinine. Daily urine samples from four whales were collected during two conceptions and 18 complete estrous cycles. LH, FSH, EC, and PdG immunoreactive levels were determined and combined with observed copulatory activity in five cycles, including two conceptive cycles from two whales. Mean luteal phase lengths ranged from 9.7 to 19.2 days. Mean follicular phase lengths ranged from 6.5 to 16.8 days. Mean estrous cycle lengths based on the first detectable PdG levels were 41.6 ± 6.72 S.E.M. days. After PdG nadir, immunoreactive FSH levels showed a bimodal pattern with the first peak being greater in size, and both preceding a follicular phase EC increase. LH levels > the 95% confidence interval of the mean were considered significant.

Combined LH immunoreactive values from whales 2 and 6 during two and three estrous cycles, respectively, had significant LH peak concentrations on day minus 2. These significant LH peaks were assumed to represent the preovulatory LH surge. Eight copulations during two conceptive cycles were observed between whales 2 and 6 and a breeding male. Six of these copulations (3 with each female whale) occurred within 72 hours of the beginning or the end of the presumptive preovulatory LH surge. Estrous activity was seen throughout the year for the herd. However, individuals had varying periods of anestrus that could not be linked to environmental, social, or nutritional influences. The whales that were reproductively successful had anestrus intervals that were usually influenced by gestation, postparturient period, or lactation. The information obtained during this research enhances the foundation for future artificial reproductive management techniques. © 1993 Wiley-Liss, Inc.