• gap junctions;
  • connexin;
  • development;
  • intercellular communication

The development of the central nervous system is a complex process involving multiple interactions between various cell types undergoing mitosis, migration, differentiation, axonal outgrowth, synaptogenesis and programmed cell death. For example, neocortical development is characterized by a series of transient events that ultimately leads to the formation of a discrete pattern of laminar and columnar organization. While neuron—glial cell—cell interactions have been shown to be involved in neuronal migration, recent observations that neurons are extensively coupled by gap junctions in the developing neocortex have implicated this phenomenon in the process of neocortical differentiation. The present review will examine the putative role of gap junctional intercellular communication in development of the central nervous system, with specific reference to recent studies in the development of the cerebral cortex.