• Ku protein;
  • DNA-end binding;
  • cell cycle


Three different types of cells were synchronized by various methods and DNA-end binding (DEB) activities of Ku were compared with asynchronous controls. In CHO K1 cells synchronized in G1 phase by serum starvation and in S phase by serum refeeding, DEB activity was reduced in S cells but remained unchanged in G1 cells. However, the same type of cells synchronized in G1/S phase by double thymidine block and in S phase by releasing the blockage, have the same DEB activity as asynchronous controls. A similar result was found in RKO and HeLa cells synchronized by the latter method. Arresting cells in mitosis with nocodazole also generated different cell cycle effects. Ku activity was reduced in CHO K1 and RKO cells, but not in HeLa cells after treatment with nocodazole. In phase-enriched cells separated by centrifugal elutriation, DEB activities were similar at different stages of the cell cycle in all three types of cells. Thus, different synchronization procedures can give very different values of Ku activity in a cell type-dependent manner. Results from elutriated cells are consistent, and suggest DEB activity of Ku does not change with the cell cycle.