• chromatin modification;
  • gene regulation;
  • cell cycle;
  • histone acetylation


The dynamic state of post-translational acetylation of eukaryotic histones is maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs have been shown to be components of various regulatory protein complexes in the cell. Their enzymatic activities, intracellular localization and substrate specificities are regulated in a complex, cell cycle related manner. In the myxomycete Physarum polycephalum multiple HATs and HDACs can be distinguished in biochemical terms and they exhibit dynamic activity patterns depending on the cell cycle stage. Here we report on the cloning of the first P. polycephalum HDAC (PpHDAC1) related to the S. cerevisiae Rpd3 protein. The expression pattern of PpHDAC1 mRNA was analysed at different time points of the cell cycle and found to be largely constant. Treatment of macroplasmodia with the HDAC inhibitor trichostatin A at several cell cycle stages resulted in a significant delay in entry into mitosis of treated versus untreated plasmodia. No effect of TSA treatment could be observed on PpHDAC1 expression itself.