SEARCH

SEARCH BY CITATION

References

  • [1]
    Harayama, S, Kok, M, Neidle, E.L (1992) Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46, 565601.
  • [2]
    Colby, J, Dalton, H (1976) Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157, 495497.
  • [3]
    Powlowski, J, Shingler, V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5, 219236.
  • [4]
    Miura, A, Dalton, H (1995) Purification and characterization of the alkene monooxygenase from Nocardia corallina B-276. Biosci. Biotechnol. Biochem. 59, 853859.
  • [5]
    Newman, L.M, Wackett, L.P (1995) Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34, 1406614076.
  • [6]
    Pikus, J.D, Studts, J.M, Achim, C, Kauffmann, K.E, Munck, E, Steffan, R.J, McClay, K, Fox, B.G (1996) Recombinant toluene-4-monooxygenase: catalytic and Mossbauer studies of the purified diiron and Rieske components of a four-protein complex. Biochemistry 35, 91069119.
  • [7]
    Small, F.J, Ensign, S.A (1997) Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes. J. Biol. Chem. 272, 2491324920.
  • [8]
    Colby, J, Dalton, H (1978) Resolution of the methane mono-oxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171, 461468.
  • [9]
    Woodland, M.P, Dalton, H (1984) Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 259, 5359.
  • [10]
    Lund, J, Dalton, H (1985) Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 291296.
  • [11]
    Lund, J, Woodland, M.P, Dalton, H (1985) Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 297305.
  • [12]
    Fox, B.G, Surerus, K.K, Munck, E, Lipscomb, J.D (1988) Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mossbauer and EPR studies. J. Biol. Chem. 263, 1055310556.
  • [13]
    Fox, B.G, Froland, W.A, Dege, J.E, Lipscomb, J.D (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a Type II methanotroph. J. Biol. Chem. 264, 1002310033.
  • [14]
    DeWitt, J.G, Bentsen, J.G, Rosenzweig, A.C, Hedman, B, Green, J, Pilkington, S, Papaefthymiou, G.C, Dalton, H, Hodgson, K.O, Lippard, S.J (1991) X-ray absorption, Mossbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase. J. Am. Chem. Soc. 113, 92199235.
  • [15]
    Nordlund, P, Dalton, H, Eklund, H (1992) The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase. FEBS Lett. 307, 257262.
  • [16]
    Rosenzweig, A.C, Frederick, C.A, Lippard, S.J, Nordlund, P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537543.
  • [17]
    Fox, B.G, Shanklin, J, Ai, J, Loehr, T.M, Sanders-Loehr, J (1994) Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33, 1277612786.
  • [18]
    Byrne, A.M, Kukor, J.J, Olsen, R.H (1995) Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1. Gene 154, 6570.
  • [19]
    Nordlund, P, Eklund, H (1995) Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758766.
  • [20]
    Gallagher, S.C, Cammack, R, Dalton, H (1997) Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur. J. Biochem. 247, 635641.
  • [21]
    Zhou, N.Y, Jenkins, A, Chan Kwo Chion, C.K, Leak, D.J (1998) The alkene monooxygenase from Xanthobacter Py2 is a binuclear non-haem iron protein closely related to toluene 4-monooxygenase. FEBS Lett. 430, 181185.
  • [22]
    Coufal, D.E, Blazyk, J.L, Whittington, D.A, Wu, W.W, Rosenzweig, A.C, Lippard, S.J (2000) Sequencing and analysis of the Methylococcus capsulatus (Bath) soluble methane monooxygenase genes. Eur. J. Biochem. 267, 21742185.
  • [23]
    Anthony, C. (1982) The Biochemistry of Methylotrophs. Academic Press, New York.
  • [24]
    Badr, O, Probert, S.D, O'Callaghan, P.W (1992) Methane. A greenhouse gas in the earth's atmosphere. Appl. Energy 41, 95113.
  • [25]
    Colby, J, Dalton, H (1979) Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem. J. 177, 903908.
  • [26]
    Fox, B.G, Lipscomb, J.D (1988) Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph. Biochem. Biophys. Res. Commun. 154, 165170.
  • [27]
    Nakajima, T, Uchiyama, H, Yagi, O, Nakahara, T (1992) Purification and properties of a soluble methane monooxygenase from Methylocystis sp. M. Biosci. Biotechnol. Biochem. 56, 736740.
  • [28]
    Shinohara, Y, Uchiyama, H, Yagi, O, Kusakabe, I (1998) Purification and characterization of component B of a soluble methane monooxygenase from Methylocystis sp. M. J. Ferment. Bioeng. 85, 3742.
  • [29]
    Grosse, S, Laramee, L, Wendlandt, K.-D, McDonald, I.R, Miguez, C.B, Kleber, H.-P (1999) Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Appl. Environ. Microbiol. 65, 39293935.
  • [30]
    Rosenzweig, A.C, Nordlund, P, Takahara, P.M, Frederick, C.A, Lippard, S.J (1995) Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem. Biol. 2, 409418.
  • [31]
    Elango, N, Radhakrishnan, R, Froland, W.A, Wallar, B.J, Earhart, C.A, Lipscomb, J.D, Ohlendorf, D.H (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 6, 556568.
  • [32]
    Chang, S.-L, Wallar, B.J, Lipscomb, J.D, Mayo, K.H (1999) Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38, 57995812.
  • [33]
    Walters, K.J, Gassner, G.T, Lippard, S.J, Wagner, G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc. Natl. Acad. Sci. USA 96, 78777882.
  • [34]
    Muller, J, Lugovskoy, A.A, Wagner, G, Lippard, S.J (2002) NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase. Biochemistry 41, 4251.
  • [35]
    DeRose, V, Liu, K.E, Lippard, S.J, Hoffman, B (1993) Proton ENDOR identification of bridging hydroxide ligands in mixed-valent diiron centers of proteins: methane monooxygenase and semimet azidohemerythrin. J. Am. Chem. Soc. 115, 64406441.
  • [36]
    Green, J, Dalton, H (1985) Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity. J. Biol. Chem. 260, 1579515801.
  • [37]
    Fox, B.G, Liu, Y, Dege, J.E, Lipscomb, J.D (1991) Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J. Biol. Chem. 266, 540550.
  • [38]
    Froland, W.A., Andersson, K.K., Lee, S.-K., Liu, Y. and Lipscomb, J.D. (1991) Oxygenation by methane monooxygenase: oxygen activation and component interactions. In: Applications of Enzyme Biotechnology (Kelly, J.W. and Baldwin, T.O., Eds.), pp. 39–53. Plenum Press, New York.
  • [39]
    Froland, W.A, Andersson, K.K, Lee, S.-K, Liu, Y, Lipscomb, J.D (1992) Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism. J. Biol. Chem. 267, 1758817597.
  • [40]
    Davydov, R, Valentine, A.M, Komar-Panicucci, S, Hoffman, B.M, Lippard, S.J (1999) An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Biochemistry 38, 41884197.
  • [41]
    Gallagher, S.C, Callaghan, A.J, Zhao, J, Dalton, H, Trewhella, J (1999) Global conformational changes control the reactivity of methane monooxygenase. Biochemistry 38, 67526760.
  • [42]
    Gassner, G.T, Lippard, S.J (1999) Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 38, 1276812785.
  • [43]
    Rosenzweig, A.C, Brandstetter, H, Whittington, D.A, Nordlund, P, Lippard, S.J, Frederick, C.A (1997) Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins: Struct. Func. Genet. 29, 141152.
  • [44]
    Lee, S.-K, Nesheim, J.C, Lipscomb, J.D (1993) Transient intermediates of the methane monooxygenase catalytic cycle. J. Biol. Chem. 268, 2156921577.
  • [45]
    Liu, K.E, Lippard, S.J (1994) Studies of the soluble methane monooxygenase protein system: structure, component interactions and hydroxylation mechanism. Adv. Inorg. Chem. 42, 263289.
  • [46]
    Merkx, M, Lippard, S.J (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 277, 58585865.
  • [47]
    Colby, J, Stirling, D.I, Dalton, H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165, 395402.
  • [48]
    Burrows, K.J, Cornish, A, Scott, D, Higgins, I.J (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130, 33273333.
  • [49]
    Green, J, Dalton, H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264, 1769817703.
  • [50]
    Fox, B.G, Borneman, J.G, Wackett, L.P, Lipscomb, J.D (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29, 64196427.
  • [51]
    Lipscomb, J.D (1994) Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48, 371399.
  • [52]
    Little, C.D, Palumbo, A.V, Herbes, S.E, Lidstrom, M.E, Tyndall, R.L, Gilmer, P.J (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54, 951956.
  • [53]
    Duba, A.G, Jackson, K.J, Jovanovich, M.C, Knapp, R.B, Taylor, R.T (1996) TCE remediation using in situ resting-state bioaugmentation. Environ. Sci. Technol. 30, 19821989.
  • [54]
    Zahn, J.A, DiSpirito, A.A (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J. Bacteriol. 178, 10181029.
  • [55]
    Bratina, B.J, Brusseau, G.A, Hanson, R.S (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int. J. Syst. Bacteriol. 42, 645648.
  • [56]
    Holmes, A.J, Costello, A, Lidstrom, M.E, Murrell, J.C (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132, 203208.
  • [57]
    Semrau, J.D, Chistoserdov, A, Lebron, J, Costello, A, Davagnino, J, Kenna, E, Holmes, A.J, Finch, R, Murrell, J.C, Lidstrom, M.E (1995) Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177, 30713079.
  • [58]
    Murrell, J.C, Gilbert, B, McDonald, I.R (2000) Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 173, 325332.
  • [59]
    Furuhashi, K, Taoka, A, Uchida, S, Karube, I, Suzuki, S (1981) Production of 1,2-epoxyalkanes from 1-alkenes by Nocardia corallina B-276. Eur. J. Appl. Microbiol. Biotechnol. 12, 3945.
  • [60]
    Saeki, H, Furuhashi, K (1994) Cloning and characterization of a Nocardia corallina B-276 gene cluster encoding alkene monooxygenase. J. Ferment. Bioeng. 78, 339406.
  • [61]
    Gallagher, S.C, George, A, Dalton, H (1998) Sequence-alignment modelling and molecular docking studies of the epoxygenase component of alkene monooxygenase from Nocardia corallina B-276. Eur. J. Biochem. 254, 480489.
  • [62]
    Furuhashi, K (1987) Production of optically active epoxides by microbial oxidation of olefins. J. Syn. Org. Chem. Jpn. 45, 162168.
  • [63]
    Saeki, H, Akira, M, Furuhashi, K, Averhoff, B, Gottschalk, G (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145, 17211730.
  • [64]
    Nurk, A, Kasak, L, Kivisaar, M (1991) Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102, 1318.
  • [65]
    Perkins, E.J, Gordon, M.P, Caceres, O, Lurquin, P.F (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172, 23512359.
  • [66]
    Sejlitz, T, Neujahr, H.Y (1991) Arginyl residues in the NADPH-binding sites of phenol hydroxylase. J. Protein Chem. 10, 4348.
  • [67]
    Shingler, V, Franklin, F.C.H, Tsuda, M, Holroyd, D, Bagdasarian, M (1989) Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J. Gen. Microbiol. 135, 10831092.
  • [68]
    Nordlund, I, Powlowski, J, Shingler, V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172, 68266833.
  • [69]
    Qian, H, Edlund, U, Powlowski, J, Shingler, V, Sethson, I (1997) Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy. Biochemistry 36, 495504.
  • [70]
    Shields, M.S, Montgomery, S.O, Chapman, P.J, Cuskey, S.M, Pritchard, P.H (1989) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ. Microbiol. 55, 16241629.
  • [71]
    Shields, M.S., Reagin, M.J., Gerger, R.R., Somerville, C., Schaubhut, R., Campbell, R. and Hu-Primmer, J. (1994) Constitutive degradation of trichloroethylene by an altered bacterium in a gas-phase bioreactor. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds (Hinchee, R.E., Leeson, A., Semprini, L. and Ong, S.K., Eds.), pp. 50–65. Lewis, Boca Raton, FL.
  • [72]
    Shields, M.S. and Francesconi, S.C. (1996) Microbial degradation of trichloroethylene, dichloroethylenes and aromatic pollutants. U.S. Patent 5,543,317.
  • [73]
    Hur, H.-G, Newman, L.M, Wackett, L, Sadowsky, M.J (1997) Toluene 2-monooxygenase-dependent growth of Burkholderia cepacia G4/PR1 on diethyl ether. Appl. Environ. Microbiol. 63, 16061609.
  • [74]
    Newman, L.M, Wackett, L.P (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179, 9096.
  • [75]
    Nelson, M.J, Kinsella, J.V, Montoya, T (1990) In situ biodegradation of TCE contaminated groundwater. Environ. Prog. 9, 190196.
  • [76]
    Krumme, M.L, Timmis, K.N, Dwyer, D.F (1993) Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms. Appl. Environ. Microbiol. 59, 27462749.
  • [77]
    Luu, P.P, Yung, C.W, Sun, A.K, Wood, T.K (1995) Monitoring trichloroethylene mineralization by Pseudomonas cepacia G4 PR1. Appl. Microbiol. Biotechnol. 44, 259264.
  • [78]
    Ng, L.C, Shingler, V, Sze, C.C, Poh, C.L (1994) Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151, 2936.
  • [79]
    Ehrt, S, Schirmer, F, Hillen, W (1995) Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol. Microbiol. 18, 1320.
  • [80]
    Herrmann, H, Muller, C, Schmidt, I, Mahnke, J, Petruschka, L, Hahnke, K (1995) Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Mol. Gen. Genet. 247, 240246.
  • [81]
    Johnson, G.R, Olsen, R.H (1995) Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl. Environ. Microbiol. 61, 33363346.
  • [82]
    Horinouchi, M, Kasuga, K, Nojiri, H, Yamane, H, Omori, T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol. Lett. 155, 99105.
  • [83]
    Arai, H, Akahira, S, Ohishi, T, Maeda, M, Kudo, T (1998) Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144, 28952903.
  • [84]
    Hino, S, Watanabe, K, Takahashi, N (1998) Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144, 17651772.
  • [85]
    Teramoto, M, Futamata, H, Harayama, S, Watanabe, K (1999) Characterization of a high-affinity phenol hydroxylase from Comamonas testosteroni R5 by gene cloning and expression in Pseudomonas aeruginosa PAO1c. Mol. Gen. Genet. 262, 552558.
  • [86]
    Horinouchi, M, Yoshida, T, Nojiri, H, Yamane, H, Omori, T (1999) Oxidation of dimethyl sulfide by various aromatic compound oxygenases from bacteria. Biotechnol. Lett. 21, 929933.
  • [87]
    Whited, G.M, Gibson, D.T (1991) Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173, 30103016.
  • [88]
    Hemmi, H, Studts, J.M, Chae, Y.K, Song, J, Markley, J.L, Fox, B.G (2001) Solution structure of the toluene 4-monooxygenase effector protein (T4moD). Biochemistry 40, 35123524.
  • [89]
    Xia, B, Pikus, J.D, Xia, W, McClay, K, Steffan, R.J, Chae, Y.K, Westler, W.M, Markley, J.L, Fox, B.G (1999) Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase. Biochemistry 38, 727739.
  • [90]
    Mitchell, K.H, Studts, J.M, Fox, B.G (2002) Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Biochemistry 41, 31763188.
  • [91]
    Winter, R.B, Yen, K.-M, Ensley, B.D (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia coli. Bio/Technology 7, 282285.
  • [92]
    Yen, K.-M, Karl, M.R, Blatt, L.M, Simon, M.J, Winter, R.B, Fausset, P.R, Lu, H.S, Harcourt, A.A, Chen, K.K (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 173, 53155327.
  • [93]
    McClay, K, Fox, B.G, Steffan, R.J (1996) Chloroform mineralization by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62, 27162722.
  • [94]
    McClay, K, Fox, B.G, Steffan, R.J (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl. Environ. Microbiol. 66, 18771882.
  • [95]
    Bertoni, G, Martino, M, Galli, E, Barbieri, P (1998) Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64, 36263632.
  • [96]
    Ayoubi, P.J, Harker, A.R (1998) Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative. Appl. Environ. Microbiol. 64, 43534356.
  • [97]
    Kim, Y, Ayoubi, P, Harker, A (1996) Constitutive expression of the cloned phenol hydroxylase gene(s) from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation. Appl. Environ. Microbiol. 62, 32273233.
  • [98]
    Leahy, J.G, Byrne, A.M, Olsen, R.H (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62, 825833.
  • [99]
    Chauhan, S, Barbieri, P, Wood, T.K (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64, 30233024.
  • [100]
    Ryoo, D, Shim, H, Canada, K, Barbieri, P, Wood, T.K (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat. Biotechnol. 18, 775778.
  • [101]
    Olsen, R.H, Kukor, J.J, Kaphammer, B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol. 176, 37493756.
  • [102]
    Leahy, J.G, Olsen, R.H (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol. Ecol. 23, 2330.
  • [103]
    Bertoni, G, Bolognese, F, Galli, E, Barbieri, P (1996) Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 62, 37043711.
  • [104]
    Zhou, N.-Y, Jenkins, A, Chan Kwo Chion, C.K, Leak, D.J (1999) The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl. Environ. Microbiol. 65, 15891595.
  • [105]
    Van Hylckama Vlieg, J.E, Leemhuis, H, Spelberg, J.H, Janssen, D.B (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J. Bacteriol. 182, 19561963.
  • [106]
    Van Ginkel, C.G, Welten, H.G.J, De Bont, J.A.M (1987) Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Appl. Environ. Microbiol. 53, 29032907.
  • [107]
    Stainthorpe, A.C, Murrell, J.C, Salmond, G.P.C, Dalton, H, Lees, V (1989) Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch. Microbiol. 152, 154159.
  • [108]
    Stainthorpe, A.C, Lees, V, Salmond, G.P.C, Dalton, H, Murrell, J.C (1990) The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91, 2734.
  • [109]
    Shigematsu, T, Hanada, S, Eguchi, M, Kamagata, Y, Kanagawa, T, Kurane, R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl. Environ. Microbiol. 65, 51985206.
  • [110]
    Cardy, D.L.N, Laidler, V, Salmond, G.P.C, Murrell, J.C (1991) Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol. Microbiol. 5, 335342.
  • [111]
    Cardy, D.L.N, Laidler, V, Salmond, G.P.C, Murrell, J.C (1991) The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Arch. Microbiol. 156, 477483.
  • [112]
    McDonald, I.R, Uchiyama, H, Kambe, S, Yagi, O, Murrell, J.C (1997) The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl. Environ. Microbiol. 63, 18981904.
  • [113]
    Hermann, H, Janke, D, Krejsa, S, Kunze, I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol. Lett. 43, 133137.
  • [114]
    Franscesconi, S.C., Blake, A.C. and Shields, M.S. (1995) Nucleotide sequence, organization, and regulation of the toluene ortho-monooxygenase (Tom) operon of Pseudomonas cepacia G4 and its constitutive variants. In: Abstr. 95th Gen. Meet. Am. Soc. Microbiol. 1995, p. 570, K-198. American Society for Microbiology, Washington, DC.
  • [115]
    Shields, M.S, Reagin, M.J, Gerger, R.R, Campbell, R, Somerville, C (1995) TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol. 61, 13521356.
  • [116]
    Canada, K.A, Iwashita, S, Shim, H, Wood, T.K (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184, 344349.
  • [117]
    Yen, K.-M, Karl, M.R (1992) Identification of a new gene, tmoF, in the Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 174, 72537261.
  • [118]
    Krum, J.G, Ensign, S.A (2001) Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J. Bacteriol. 183, 21722177.
  • [119]
    Powlowski, J, Sealy, J, Shingler, V, Cadieux, E (1997) On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Biol. Chem. 272, 945951.
  • [120]
    Shingler, V, Powlowski, J, Marklund, U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711724.
  • [121]
    Byrne, A.M, Olsen, R.H (1996) Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J. Bacteriol. 178, 63276337.
  • [122]
    Amabile-Cuevas, C.F, Chicurel, M.E (1992) Bacterial plasmids and gene flux. Cell 70, 189199.
  • [123]
    Ochman, H, Lawrence, J.G, Groisman, E.A (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299304.
  • [124]
    Eberhard, W.G (1989) Why do bacterial plasmids carry some genes and not others. Plasmid 21, 167174.
  • [125]
    Eberhard, W.G (1990) Evolution in bacterial plasmids and levels of selection. Q. Rev. Biol. 65, 322.
  • [126]
    Bergstrom, C.T, Lipsitch, M, Levin, B.R (2000) Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155, 15051519.
  • [127]
    Levin, B.R, Bergstrom, C.T (2000) Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc. Natl. Acad. Sci. USA 97, 69816985.
  • [128]
    Garrity, G. (2000) Appendix 2. Bergey's Manual of Systematic Bacteriology, Second Edition. Appendix to Madigan, M.T., Martinko, J.M. and Parker, J. (2000) Brock: Biology of Microorganisms, 9th edn. Prentice-Hall, Upper Saddle River, NJ.
  • [129]
    Allen, J.R, Clark, D.D, Krum, J.G, Ensign, S.A (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc. Natl. Acad. Sci. USA 96, 84328437.
  • [130]
    Krum, J.G, Ensign, S.A (2000) Heterologous expression of bacterial epoxyalkane:coenzyme M transferase and inducible coenzyme M biosynthesis in Xanthobacter strain Py2 and Rhodococcus rhodochrous B276. J. Bacteriol. 182, 26292634.
  • [131]
    Ensign, S.A (2001) Microbial metabolism of aliphatic alkenes. Biochemistry 40, 58455853.
  • [132]
    Lawrence, J.G, Ochman, H (1998) Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 94139417.
  • [133]
    Mandel, M (1966) Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol. 43, 273292.
  • [134]
    Juni, E (1978) Genetics and physiology of Acinetobacter. Annu. Rev. Microbiol. 32, 349371.
  • [135]
    Whittenbury, R. and Dalton, H. (1981) The methylotrophic bacteria. In: The Prokaryotes (Starr, M.P., Stolp, H., Truper, H.G., Balows, A. and Schlegel, H.G., Eds.), pp. 894–902. Springer, New York.
  • [136]
    Palleroni, N.J. 1984. Gram-negative aerobic rods and cocci. In: Bergey's Manual of Systematic Bacteriology (Krieg, N.R. and Holt, J.G., Eds), Vol. 1, pp. 140–406. William and Wilkins, Baltimore, MD.
  • [137]
    Uchiyama, H, Nakajima, T, Yagi, O, Tabuchi, T (1989) Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium, strain M. Agric. Biol. Chem. 53, 29032907.
  • [138]
    Bowman, J.P, Sly, L.I, Hayward, A.C (1991) Contribution of genome characteristics to assessment of taxonomy of obligate methanotrophs. Int. J. Syst. Bacteriol. 41, 301305.
  • [139]
    Lawrence, J.G, Ochman, H (1997) Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383397.
  • [140]
    Adachi, J. and Hasegawa, M. (1996) Molphy Version 2.3. The Institute of Statistical Mathematics, Tokyo.
  • [141]
    Jones, D.T, Taylor, W.R, Thornton, J.M (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275282.
  • [142]
    Cao, Y, Adachi, J, Janke, A, Paabo, S, Hasegawa, M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J. Mol. Evol. 39, 519527.
  • [143]
    Hasegawa, M, Kishino, H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum likelihood tree. Mol. Biol. Evol. 11, 142145.
  • [144]
    Saitou, N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406425.
  • [145]
    Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) and Manual, Version 3.5c. Department of Genetics, University of Washington, Seattle, WA.
  • [146]
    Pikus, J.D, Studts, J.M, McClay, K, Steffan, R.J, Fox, B.G (1997) Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry 36, 92839289.
  • [147]
    Leahy, J.G. and Morcomb, S.M. (1999) Phylogeny of the methane, alkene, and aromatic-ring monooxygenases. In: Abstr. 99th Gen. Meet. Am. Soc. Microbiol. 1999, p. 579, Q-239. American Society for Microbiology, Washington, DC.
  • [148]
    Kahng, H.-Y, Malinverni, J.C, Majko, M.M, Kukor, J.J (2001) Genetic and functional analysis of the tbc operons for catabolism of alkyl- and chloroaromatic compounds in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 67, 48054816.
  • [149]
    Lawrence, J.G (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr. Opin. Microbiol. 2, 519523.
  • [150]
    Batie, C.J., Ballou, D.P. and Correll, C.J. (1991) Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. In: Chemistry and Biochemistry of Flavoenzymes (Muller, F., Ed.), pp. 543–556. CRC Press, Boca Raton, FL.
  • [151]
    Karplus, P.A, Daniels, M.J, Herriott, J.R (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251, 6066.
  • [152]
    Neidle, E.L, Hartnett, C, Ornston, L.N, Bairoch, A, Rekik, M, Harayama, S (1991) Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J. Bacteriol. 173, 53855395.
  • [153]
    Andrews, S.C, Shipley, D, Keen, J.N, Findlay, J.B.C, Harrison, P.M, Guest, J.R (1992) The haemoglobin-like protein (HMP) of Escherichia coli has ferrisiderophore reductase activity and its C-terminal domain shares homology with ferredoxin NADP+ reductases. FEBS Lett. 302, 247252.
  • [154]
    Bundy, B.M, Campbell, A.L, Neidle, E.L (1998) Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J. Bacteriol. 180, 44664474.
  • [155]
    Ouchiyama, N, Miyachi, S, Omori, T (1998) Cloning and nucleotide sequence of carbazole catabolic genes from Pseudomonas stutzeri OM1, isolated from activated sludge. J. Gen. Appl. Microbiol. 44, 5763.
  • [156]
    Haak, B, Fetzner, S, Lingens, F (1995) Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J. Bacteriol. 177, 667675.
  • [157]
    Suen, W.-C, Haigler, B.E, Spain, J.C (1996) 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT similarity to naphthalene dioxygenase. J. Bacteriol. 178, 49264934.
  • [158]
    Hickey, W.J, Sabat, G, Yuroff, A.S, Arment, A.R, Perez-Lesher, J (2001) Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl. Environ. Microbiol. 67, 46034609.
  • [159]
    Simon, M.J, Osslund, T.D, Saunders, R, Ensley, B.D, Suggs, S, Harcourt, A, Suen, W.-C, Cruden, D.L, Gibson, D.T, Zylstra, G.J (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 3137.
  • [160]
    Parales, J.V, Kumar, A, Parales, R.E, Gibson, D.T (1996) Cloning and sequencing of the genes encoding 2-nitrotoluene dioxygenase from Pseudomonas sp. JS42. Gene 181, 5761.
  • [161]
    Rosche, B, Tshisuaka, B, Hauer, B, Lingens, F, Fetzner, S (1997) 2-Oxo-1,2-dihydroquinoline 8-monooxygenase: phylogenetic relationship to other multicomponent nonheme iron oxygenases. J. Bacteriol. 179, 35493554.
  • [162]
    Takizawa, N, Kaida, N, Torigoe, S, Moritani, T, Sawada, T, Satoh, S, Kiyohara, H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol. 176, 24442449.
  • [163]
    Kiyohara, H., Tabata, Y. and Takizawa, N. (1999) A phenanthrene degradative gene cluster in Alcaligenes faecalis. Unpublished submission to GenBank, accession number AB024945.
  • [164]
    Suzuki, M, Hayakawa, T, Shaw, J.P, Rekik, M, Harayama, S (1991) Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173, 16901695.
  • [165]
    Harayama, S, Rekik, M, Bairoch, A, Neidle, E.L, Ornston, L.N (1991) Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J. Bacteriol. 173, 75407548.
  • [166]
    De Marco, P, Moradas-Ferreira, P, Higgins, T.P, McDonald, I, Kenna, E.M, Murrell, J.C (1999) Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 181, 22442251.
  • [167]
    Baxter, N.J, Scanlan, J, De Marco, P, Wood, A.P, Murrell, J.C (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl. Environ. Microbiol. 68, 289296.
  • [168]
    Correll, C.C, Ludwig, M.L, Bruns, C.M, Karplus, P.A (1993) Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Protein Sci. 2, 21122133.
  • [169]
    Wang, Y, Garnon, J, Labbe, D, Bergeron, H, Lau, P.C.-K (1995) Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene 164, 117122.
  • [170]
    Taira, K, Hirose, J, Hayashida, S, Furukawa, K (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267, 48444853.
  • [171]
    Tan, H.-M, Tang, H.-Y, Joannou, C.L, Abdel-Wahab, N.H, Mason, J.R (1993) The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G+C content. Gene 130, 3339.
  • [172]
    Shepherd, J.M, Lloyd-Jones, G (1998) Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem. Biophys. Res. Commun. 247, 129135.
  • [173]
    Eaton, R.W (1996) p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. J. Bacteriol. 178, 13511362.
  • [174]
    Aoki, H, Kimura, T, Habe, H, Yamane, H, Kodama, T, Omori, T (1996) Cloning, nucleotide sequence, and characterization of the genes encoding enzymes involved in the degradation of cumene to 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid in Pseudomonas fluorescens IPO1. J. Ferment. Bioeng. 81, 187196.
  • [175]
    Kurowski, B, Ludwig, B (1987) The genes of the Paracoccus denitrificans bc1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J. Biol. Chem. 262, 1380513811.
  • [176]
    Diaz, E, Ferrandez, A, Garcia, J.L (1998) Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180, 29152923.
  • [177]
    Pflugmacher, U, Averhoff, B, Gottschalk, G (1996) Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl. Environ. Microbiol. 62, 39673977.
  • [178]
    Bahar, M, De Majnik, J, Saint, C.P, Murphy, P.J (2000) Conservation of a pseudomonad-like hydrocarbon degradative ferredoxin oxygenase complex involved in rhizopine catabolism in Sinorhizobium meliloti and Rhizobium leguminosarum bv. viciae. J. Mol. Microbiol. Biotechnol. 2, 257259.
  • [179]
    Conradt, D., Klein, J. and Mattes, R. (1996) Cloning and sequence of the DNA encoding a part of the naphthalene-2-sulfonate degradation pathway from Sphingomonas BN6. Unpublished submission to GenBank, accession number U65001.
  • [180]
    Puskas, L.G, Inui, M, Kele, Z, Yukawa, H (2000) Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. DNA Seq. 11, 920.
  • [181]
    Iwasaki, T., Iwasaki, H., Kounosu, A., Hayashi-Iwasaki, Y., Kurosawa, N., Oshima, T. and Dikanov, S.A. (2000) Archaeal novel soluble Rieske-type proteins. Unpublished submission to GenBank, accession number AB047031.
  • [182]
    Werlen, C, Kohler, H.-P.E, van der Meer, J.R (1996) The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J. Biol. Chem. 271, 40094016.
  • [183]
    Zylstra, G.J, Gibson, D.T (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem. 264, 1494014946.
  • [184]
    Bahar, M, De Majnik, J, Wexler, M, Fry, J, Poole, P.S, Murphy, P.J (1998) A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradation pathway. Mol. Plant-Microbe Interact. 11, 10571068.
  • [185]
    Kaneko, T, Nakamura, Y, Sato, S, Asamizu, E, Kato, T, Sasamoto, S, Watanabe, A, Idesawa, K, Ishikawa, A, Kawashima, K, Kimura, T, Kishida, Y, Kiyokawa, C, Kohara, M, Matsumoto, M, Matsuno, A, Mochizuki, Y, Nakayama, S, Nakazaki, N, Shimpo, S, Sugimoto, M, Takeuchi, C, Yamada, M, Tabata, S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331338.
  • [186]
    Neubauer, H, Pantel, I, Gotz, F (1999) Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J. Bacteriol. 181, 14811488.
  • [187]
    Gurbiel, R.J, Batie, C.J, Sivaraja, M, True, A.E, Fee, J.A, Hoffman, B.M, Ballou, D.P (1989) Electron-nuclear double resonance spectroscopy of 15N-enriched phthalate dioxygenase from Pseudomonas cepacia proves that two histidines are coordinated to the (2Fe-2S) Rieske-type clusters. Biochemistry 28, 48614871.
  • [188]
    Gogarten, J.P, Kibak, H, Dittrich, P, Taiz, L, Bowman, E.J, Bowman, B.J, Manolson, M.F, Poole, R.J, Date, T, Oshima, T, Konishi, J, Denda, K, Oshida, M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86, 66616665.
  • [189]
    Gogarten, J.P, Starke, T, Kibak, H, Fishman, J, Taiz, L (1992) Evolution and isoforms of V-ATPase subunits. J. Exp. Biol. 172, 137147.
  • [190]
    Marin, I, Fares, M.A, Gonzalez-Candelas, F, Barrio, E, Moya, A (2001) Detecting changes in the functional constraints of paralogous genes. J. Mol. Evol. 52, 1728.
  • [191]
    O'Kane, D.J, Prasher, D.C (1992) Evolutionary origins of bacterial bioluminescence. Mol. Microbiol. 6, 443449.
  • [192]
    Jordan, A, Reichard, P (1998) Ribonucleotide reductases. Annu. Rev. Biochem. 67, 7198.
  • [193]
    Eisen, J.A (2000) Assessing evolutionary relationships among microbes from whole-genome analysis. Curr. Opin. Microbiol. 3, 475480.