• [1]
    Moore, B. (1960) A new screen test and selective medium for the rapid detection of epidemic strains of Staphylococcus aureus. Lancet ii, 453458.
  • [2]
    Richmond, M.H., John, M. (1964) Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts. Nature 202, 13601361.
  • [3]
    Novick, R.P., Roth, C. (1968) Plasmid resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95, 13351342.
  • [4]
    Smith, D.H. (1967) R factors mediate resistances to mercury, nickel, and cobalt. Science 156, 11141116.
  • [5]
    Fagerstrom, T., Jernelov, A. (1971) Formation of methyl mercury from pure mercuric sulphide in aerobic organic sediment. Water Res. 5, 121122.
  • [6]
    Fagerstrom, T., Jernelov, A. (1972) Some aspects of the quantitative ecology of mercury. Water Res. 6, 11391202.
  • [7]
    Tonomura, K., Kanzaki, F. (1969) The reductive decomposition of organic mercurials by cell-free extracts of a mercury resistant pseudomonad. Biochim. Biophys. Acta 184, 227229.
  • [8]
    Furukawa, K., Suzuki, T., Tonomura, K. (1969) Decomposition of organic mercurial compounds by mercury-resistant bacteria. Agric. Biol. Chem. 33, 128130.
  • [9]
    Tonomura, K., Maeda, K., Futai, F., Nakagami, T., Yamada, M. (1968) Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria. Nature 217, 644646.
  • [10]
    Schottel, J., Mandal, A., Clark, D., Silver, S., Hedges, R.W. (1974) Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251, 335337.
  • [11]
    Clark, D.L., Weiss, A.A., Silver, S. (1977) Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J. Bacteriol. 132, 186196.
  • [12]
    Summers, A.O., Sugarman, L.I. (1974) Cell-free mercury(II)-reducing activity in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 119, 242249.
  • [13]
    Schottel, J.L. (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253, 43414349.
  • [14]
    Foster, T.J., Nakahara, H., Weiss, A.A., Silver, S. (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R100-1. J. Bacteriol. 140, 167181.
  • [15]
    Nakahara, H., Silver, S., Miki, T., Rownd, R.H. (1979) Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140, 161166.
  • [16]
    Jackson, W.J., Summers, A.O. (1982) Polypeptides encoded by the mer operon. J. Bacteriol. 149, 479487.
  • [17]
    Jackson, W.J., Summers, A.O. (1982) Biochemical characterization of the HgCl2-inducible polypeptides encoded by the mer operon of plasmid R100. J. Bacteriol. 151, 962970.
  • [18]
    Laddaga, R.A., Chu, L., Misra, T., Silver, S. (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 84, 51065110.
  • [19]
    Brown, N.L., Misra, T.K., Winnie, J.N., Schmidt, A., Seiff, M., Silver, S. (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202, 143151.
  • [20]
    Barrineau, P., Gilbert, M.P., Jackson, W.J., Jones, C.S., Summers, A.O., Wisdom, S. (1984) The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J. Mol. Appl. Genet. 2, 601619.
  • [21]
    Wang, Y., Moore, M.J., Levinson, H.S., Silver, S., Walsh, C.T. (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad spectrum mercury-resistance. J. Bacteriol. 171, 8392.
  • [22]
    Bogdanova, E., Mindlin, S., Pakrava, E., Kocur, M., Rouch, D. (1992) Mercuric reductase in enviromental Gram-positive bacteria sensitive to mercury. FEMS Microbiol. Lett. 97, 95100.
  • [23]
    Liebert, C.A., Wireman, J., Smith, T., Summers, A.O. (1997) Phylogeny of mercury resistance (mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl. Environ. Microbiol. 63, 10661076.
  • [24]
    Steele, R.A., Opella, S.J. (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36, 68856895.
  • [25]
    Osborn, A.M., Bruce, K.D., Strike, P., Ritchie, D.A. (1997) Distribution, diversity, and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol. Rev. 19, 239262.
  • [26]
    Huang, C.-C., Narita, M., Yamagata, T., Endo, G. (1999) Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium MB1. Gene 239, 361366.
  • [27]
    Shiratori, T., Inoue, C., Sugawara, K., Kusano, T., Kitagawa, Y. (1989) Cloning and expression of Thiobacillus ferroxidans mercury ion resistance genes in Escherichia coli. J. Bacteriol. 171, 34583464.
  • [28]
    Goldstein, C., Lee, M.D., Sanchez, S., Hudson, C., Phillips, B., Register, B., Grady, M., Liebert, C., Summers, A.O., White, D.G., Maurer, J.J. (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents Chemother. 45, 723726.
  • [29]
    Bruce, K.D., Hiorns, W.D., Hobman, J.L., Osborn, A.M., Strike, P., Ritchie, D.A. (1992) Amplification of DNA from native populations of soil bacteria by using polymerase chain reaction. Appl. Environ. Microbiol. 58, 34133416.
  • [30]
    Osborn, A., Bruce, K., Strike, P., Ritchie, D. (1993) Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from Gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl. Environ. Microbiol. 59, 40244030.
  • [31]
    Hobman, J., Kholodii, G., Nikiforov, V., Ritchie, D.A., Strike, P., Yurieva, O. (1994) The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 277, 7378.
  • [32]
    Kholodi, G.Y., Gorlenko, Z.M., Lomoskaya, O.L., Mindlin, S.Z., Yurieva, O.V., Nikiforov, V.G. (1993) Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid 30, 303308.
  • [33]
    Kholodii, G.Y., Mindlin, S.Z., Bass, I.A., Yurieva, O.V., Minakhina, S.V., Nikiforov, V.G. (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol. Microbiol. 17, 11891200.
  • [34]
    Yurieva, O., Kholodii, G., Minakhin, L., Gorlenko, J., Kalyaeva, E., Mindlin, S., Nikiforov, V. (1997) Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria. Mol. Microbiol. 24, 321329.
  • [35]
    Kholodii, G.Y., Yurieva, O.V., Gorlenko, Z.M., Mindlin, S.Z., Bass, I.A., Lomovskya, O.L., Kopteva, A.V., Nikiforov, V.G. (1997) Tn5041: a chimeric mercury resistance transposon closely related to a toluene degradative transposon Tn4651. Microbiology 143, 25492556.
  • [36]
    Bogdanova, E., Minakhin, L., Bass, I.A., Volodin, A., Hobman, J.L., Nikiforov, V.G. (2001) Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Res. Microbiol. 152, 503514.
  • [37]
    Wedepohl, K.K. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta 59, 12171232.
  • [38]
    Barnes, H.L. and Seward, T.M. (1997) Geothermal systems and mercury deposits. In: Geochemistry of Hydrothermal Ore Deposits, 3rd edn. (Barnes, H.L., Ed.), pp. 699–736. John Wiley and Sons, New York.
  • [39]
    Weast, R.C. (1973) Handbook of Chemistry and Physics. CRC Press, Cleveland, OH.
  • [40]
    National Research Council (2000) Toxicological Effects of Methylmercury. National Academy Press, Washington, DC.
  • [41]
    Mason, R. and Fitzgerald, W. (1996) The global mercury cycle: Oceanic and anthropogenic aspects. In: Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances (Baeyens, W., Ed.), pp. 85–108. Kluwer Academic, Dordrecht.
  • [42]
    Slemer, F., Langer, E. (1992) Increase in global atmospheric concentrtions of mercury inferred from measurements over the Atlantic Ocean. Nature 355, 434437.
  • [43]
    Fitzgerald, W.D., Engstrom, R., Mason, R., E, N. (1997) The case for atmospheric mercury contamination in remote areas. Environ. Sci. Technol. 32, 17.
  • [44]
    Lorey, P., Driscoll, C. (1999) Historical trends of mercury deposition in Adirondack Lakes. Environ. Sci. Technol. 33, 718722.
  • [45]
    Swain, E.B., Engstrom, D., Brigham, M., Henning, T., Brezonik, P. (1992) Increasing rates of atmospheric mercury deposition in mid-continental North America. Science 257, 784787.
  • [46]
    Schuster, P.F., Krabbenhoft, D.P., Naftz, D.L., Cecil, L.D., Olson, M.L., Dewild, J.F., Susong, D.D., Green, J.R., Abbott, M.L. (2002) Atmospherc mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ. Sci. Technol. 36, 23032310.
  • [47]
    Morel, F.M.M., Kraepiel, A.M.L., Amyot, M. (1998) The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 29, 543566.
  • [48]
    Clarkson, T.W. (1997) The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369403.
  • [49]
    Clarkson, T.W. (2002) The three modern faces of mercury. Environ. Health Perspect. 110 (Suppl. 1), 1123.
  • [50]
    Lawson, N.M., Mason, R.P. (2001) Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in western Maryland. Water Res. 35, 40394052.
  • [51]
    Barkay, T., Turner, R., Saouter, E., Horn, J. (1992) Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3, 147159.
  • [52]
    Jensen, S., Jernelöv, A. (1969) Biological methylation of mercury in aquatic organisms. Nature 223, 753754.
  • [53]
    Wood, J.M. (1974) Biological cycles for toxic elements in the environment. Science 183, 10491052.
  • [54]
    Wood, J.M., Scott Kennedy, F., Rosen, C.G. (1968) Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 220, 173174.
  • [55]
    Vonk, J.W., Sijpesteijn, A.K. (1973) Studies on the methylation of mercuric chlorid by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek 39, 505513.
  • [56]
    Compeau, G.C., Bartha, R. (1985) Sulfate-reducing bacteria: principle methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50, 498502.
  • [57]
    Gilmour, C.C., Henry, E.A., Mitchell, R. (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 26, 22812287.
  • [58]
    King, J.K., Kostka, J.E., Frischer, M.E., Saunders, F.M. (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl. Environ. Microbiol. 66, 24302437.
  • [59]
    Benoit, J.M., Gilmour, C.C., Mason, R.P. (2001) The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environ. Sci. Technol. 35, 127132.
  • [60]
    Benoit, J.M., Gilmour, C.C., Mason, R.P. (2001) Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl. Environ. Microbiol. 67, 5158.
  • [61]
    Benoit, J.M., Gilmour, C.C., Mason, R., Hayes, A. (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ. Sci. Technol. 33, 951957.
  • [62]
    Berman, M., Chase, J.T., Bartha, R. (1990) Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 56, 298300.
  • [63]
    Choi, S.C., Chase, J.T., Bartha, R. (1994) Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60, 40724077.
  • [64]
    Choi, S.C., Bartha, R. (1993) Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 59, 290295.
  • [65]
    Choi, S.C. T. Chase Jr. Bartha, R. (1994) Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60, 13421346.
  • [66]
    Siciliano, S.D., Lean, D.R. (2002) Methyltransferase: an enzyme assay for microbial methylmercury formation in acidic soils and sediments. Environ. Toxicol. Chem. 21, 11841190.
  • [67]
    Rowland, I.R., Davies, M.J., Grasso, P. (1977) Volatilization of methylmercuric chloride by hydrogen sulphide. Nature 265, 718719.
  • [68]
    Deacon, G.B. Volatilisation of methylmercuric chloride by hydrogen sulphide. Nature. 275, 1978. 344
  • [69]
    Baldi, F., Pepi, M., Filippelli, M. (1993) Methylmercury resistance in Desulovibrio desulfuricans strains in relation to methylmercury degradation. Appl. Environ. Microbiol. 59, 24792485.
  • [70]
    Mason, R.P., Sullivan, K.A. (1999) The distribution and speciation of mercury in the South and Equatorial Atlantic: Biogeochemical cycling on trace substances in the Atlantic Ocean; results from the Intergovernmental Oceanographic Commission baseline surveys in August 1993 and May/June 1996. Deep-Sea Res. II 46, 937956.
  • [71]
    Wallschleager, D., Hintelmann, H., Evans, R.D., Wilken, R.D. (1995) Volatilization of dimethylemrcury and elemental mercury from River Elba floodplain soils. Water Air Soil Pollut. 80, 13251329.
  • [72]
    Weber, J.H. (1993) Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere 26, 20632077.
  • [73]
    Falter, R. (1999) Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: part 1: localisation of the compounds effecting the abiotic mercury methylation. Chemosphere 39, 10511073.
  • [74]
    Cerrati, G., Bernhard, M., Weber, J.H. (1992) Model reactions for abiotic mercury(II) methylation: kinetics of methylation of mercury(II) by mono-, di-, and tri-methylation in seawater. Appl. Organomet. Chem. 6, 587595.
  • [75]
    Oremland, R.S., Culbertson, C.W., Winfrey, M.R. (1991) Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Appl. Environ. Microbiol. 57, 130137.
  • [76]
    Marvin-Diapsquale, M.C., Oremland, R.S. (1998) Bacterial methylmercury degradation in Florida Everglades peat sediment. Environ. Sci. Technol. 32, 25562563.
  • [77]
    Schaefer, J., Latowski, J., Barkay, T. (2002) mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions. Geomicrobiol. J. 19, 87102.
  • [78]
    Marvin-Diapsquale, M.C., Agee, J., McGowan, C., Oremland, R.S., Thomas, M., Krabbenhoft, D., Gilmour, C.C. (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ. Sci. Technol. 34, 49084917.
  • [79]
    Hines, M.E., Horvat, M., Faganeli, J., Bonzongo, J.C., Barkay, T., Major, E.B., Scott, K.J., Bailey, E.A., Warwick, J.J., Lyons, W.B. (2000) Mercury biogeochemistry in the Idrija river, Slovenia, from above the mine into the Gulf of Trieste. Environ. Res. 83, 129139.
  • [80]
    Reniero, D., Galli, E., Barbieri, P. (1995) Cloning and comparison of mercury- and organomercurial-resistance determinanats from Pseudomonas stutzeri plasmid. Gene 166, 7782.
  • [81]
    Suda, I., Suda, M., Hirayama, K. (1993) Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light. Arch. Toxicol. 67, 365368.
  • [82]
    Sellers, P., Kelly, C.A., Rudd, J.W.M., MacHutchon, A.R. (1996) Photodegradation of methylmercury in lakes. Nature 380, 694697.
  • [83]
    Nriagu, J.O. (1994) Mechanistic steps in the photoreduction of mercury in natural waters. Sci. Total Environ. 154, 18.
  • [84]
    Schlüter, K. (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ. Geol. 39, 249271.
  • [85]
    Carpi, A., Lindberg, S.E. (1997) Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage. Environ. Sci. Technol. 31, 20852091.
  • [86]
    Vandal, G.M., Mason, R., Fitzgerald, W.F. (1991) Cycling of volatile mercury in temperate lakes. Water Air Soil Pollut. 56, 791803.
  • [87]
    Lalonde, J.D., Poulain, A.J., Amyot, M. (2002) The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36, 174178.
  • [88]
    Fitzgerald, W.F., Mason, R., Vandal, G.M. (1991) Atmospheric cycling and air-water excahnge of mercury over mid-continental lacusterine regions. Water Air Soil Pollut. 56, 745767.
  • [89]
    Fitzgerald, W.F., Gill, G.A., Kim, J.P. (1984) An equatorial Pacific Ocean source of atmospheric mercury. Science 224, 597599.
  • [90]
    Kim, J.P., Fitzgerald, W.F. (1986) Sea-air partitioning of mercury in the equatorial Pacific Ocean. Science 231, 11311133.
  • [91]
    Sullivan, K.A., Mason, R.P. (1998) The concentration and distribution of mercury in Lake Michigan. Sci. Total Environ. 213, 213228.
  • [92]
    Barkay, T., Turner, R., VandenBrook, A., Liebert, C. (1991) The relationships of Hg(II) volatilization from a freshwater pond to abundance of mer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21, 151161.
  • [93]
    Barkay, T. (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Appl. Environ. Microbiol. 53, 27252732.
  • [94]
    Nazaret, S., Jeffrey, W.H., Saouter, E., von Haven, R., Barkay, T. (1994) merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl. Environ. Microbiol. 60, 40594065.
  • [95]
    Ogunseitan, O.A. (1998) Protein method for investigating mercuric reductase gene expression in aquatic environments. Appl. Environ. Microbiol. 64, 694702.
  • [96]
    Siciliano, S.D., O'Driscoll, N.J., Lean, D.R. (2002) Microbial reduction and oxidation of mercury in freshwater lakes. Environ. Sci. Technol. 36, 30643068.
  • [97]
    Golding, G.R., Kelly, C.A., Sparling, R., Loewen, P.C., Rudd, J.W.M., Barkay, T. (2002) Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol. Oceanogr. 47, 967975.
  • [98]
    Yu, H., Chu, L., Misra, T.K. (1996) Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells. J. Bacteriol. 178, 27122714.
  • [99]
    Ben-Bassat, D., Mayer, A.M. (1978) Light-induced Hg volatilization and O2 evolution in Chlorella and the effct of DCMU and methylamine. Physiol. Plant. 42, 3338.
  • [100]
    Devars, S., Aviles, C., Cervantes, C., Moreno-Sanchez, R. (2000) Mercury uptake and removal by Euglena gracilis. Arch. Microbiol. 174, 175180.
  • [101]
    Zhang, H., Lindberg, S.E. (2001) Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater. Environ. Sci. Technol. 35, 928935.
  • [102]
    Skogerboe, R.K., Wilson, S.A. (1981) Reduction of ionic species by fulvic acid. Anal. Chem. 53, 228232.
  • [103]
    Allard, B., Arsenie, I. (1991) Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle. Water Air Soil Pollut. 56, 457464.
  • [104]
    Baltisberger, R.J., A, H.D., Grieble, D., Ballintine, T.A. (1979) A study of the disproportionation of mercury(I) induced by gas sparging in acidic aqueous solutions for cold-vapor atomic absorption spectrometry. Anal. Chim. Acta 111, 111122.
  • [105]
    Smith, T., Pitts, K., McGarvey, J.A., Summers, A.O. (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl. Environ. Microbiol. 64, 13281332.
  • [106]
    Summers, A.O., Silver, S. (1972) Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112, 12281236.
  • [107]
    Hamlett, N.V., Landale, E.C., Davis, B.H., Summers, A.O. (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J. Bacteriol. 174, 63776385.
  • [108]
    Kim, K.-H., Hanson, P.J., Barnett, M.O. and Lindberg, S.E. (1997) Biogeochemistry of mercury in the air-soil-plant system. In: Mercury and its Effects on Environment and Biology, 1st edn., Vol. 34 (Sigel, A. and Sigel, H., Eds), pp. 185–212. Marcel Dekker, New York.
  • [109]
    Magos, L., Clarkson, T.W. (1978) Role of catalase in the oxidation of mercury vapor. Biochem. Pharmacol. 27, 13731377.
  • [110]
    Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K.J., Landis, M.S., Stevens, R.K., Goodsite, M., Richter, A. (2002) Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 36, 12451256.
  • [111]
    Thoming, J., Kliem, B.K., Ottosen, L.M. (2000) Electrochemically enhanced oxidation reactions in sandy soil polluted with mercury. Sci. Total Environ. 261, 137147.
  • [112]
    Lalonde, J.D., Amyot, M., Kraepiel, A.M., Morel, F.M. (2001) Photooxidation of Hg(0) in artificial and natural waters. Environ. Sci. Technol. 35, 13671372.
  • [113]
    Amyot, M., Gill, G.A., Morel, F.M. (1997) Production and loss of dissolved gaseous mecruy in coastal seawater. Environ. Sci. Technol. 31, 36063611.
  • [114]
    De Magalhaes, M.E., Tubino, M. (1995) A possible path for mercury in biological systems: the oxidation of metallic mercury by molecular oxygen in aqueous solutions. Sci. Total Environ. 170, 229239.
  • [115]
    Munthe, J. (1992) The aqueous oxidation of elemental mercury by ozone. Atmos. Environ. 26A, 14611468.
  • [116]
    Seigneur, C., Wrobel, J., Constantinou, E. (1994) A chemical kinetic mechanism for atmospheric inorganic mercury. Environ. Sci. Technol. 28, 15891597.
  • [117]
    Yamamoto, M. (1995) Possible mechanism of elemental mercury oxidation in the presence of SH compounds in aqueous solution. Chemosphere 31, 27912798.
  • [118]
    Ebinghaus, R., Kock, H.H., Temme, C., Einax, J.W., Lowe, A.G., Richter, A., Burrows, J.P., Schroeder, W.H. (2002) Antarctic springtime depletion of atmospheric mercury. Environ. Sci. Technol. 36, 12381244.
  • [119]
    Brown, N.L., Stoyanov, J.V., Kidd, S.P. and Hobman, J.L. (2003) The MerR family of transcriptional regulators. FEMS Microbiol. Rev., 145–163.
  • [120]
    Caguiat, J., Watson, A.L., Summers, A.O. (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181, 34623471.
  • [121]
    Park, S.-J., Wireman, J., Summers, A.O. (1992) Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol. 174, 21602171.
  • [122]
    Ross, W., Park, S.-J., Summers, A.O. (1989) Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J. Bacteriol. 171, 40094018.
  • [123]
    Heltzel, A., Lee, I.W., Totis, P.A., Summers, A.O. (1990) Activator-dependent preinduction binding of sigma-70 RNA polymerase at the metal-regulated mer promoter. Biochemistry 29, 95729584.
  • [124]
    Kulkarni, R., Summers, A.O. (1999) MerR crosslinks to the α, β, and σ70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 38, 33623368.
  • [125]
    Ansari, A.Z., Chael, M.L., O'Halloran, T.V. (1991) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 8789.
  • [126]
    Ansari, A.Z., Bradner, J.E., O'Halloran, T.V. (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371375.
  • [127]
    Lee, I.W., Livrelli, V., Park, S.-J., Totis, P.A., Summers, A.O. (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants. J. Biol. Chem. 268, 26322639.
  • [128]
    Livrelli, V., Lee, I.W., Summers, A.O. (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I Metalloregulatory protein MerR mutants. J. Biol. Chem. 268, 26232631.
  • [129]
    Ptashne, M. and Gann, A. (2002) Genes and Signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [130]
    Helmann, J.D., Ballard, B.T., Walsh, C.T. (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247, 946948.
  • [131]
    Shewchuk, L.M., Helmann, J.D., Ross, W., Park, S.J., Summers, A.O., Walsh, C.T. (1989) Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Biochemistry 28, 23402344.
  • [132]
    Shewchuk, L.M., Verdine, G.L., Nash, H., Walsh, C.T. (1989) Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer via Cys126 activates transcription. Biochemistry 28, 61406145.
  • [133]
    Shewchuk, L.M., Verdine, G.L., Walsh, C.T. (1989) Transcriptional switching by the metalloregulatory MerR protein: Initial characterization of DNA and mercury(II) binding activities. Biochemistry 28, 23312339.
  • [134]
    Zeng, Q., Stålhandske, C., Anderson, M.C., Scott, R.A., Summers, A.O. (1998) The core metal recognition domain of MerR. Biochemistry 37, 1588515895.
  • [135]
    Godsey, M.H., Baranova, N.N., Neyfakh, A.A., Brennan, R.G. (2001) Crystal structure of MtaN, a global multidrug transporter gene activator. J. Biol. Chem. 276, 4717847184.
  • [136]
    Heldwein, E.E.Z., Brennan, R.G. (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409, 378382.
  • [137]
    O'Halloran, T.V., Walsh, C. (1987) Metalloregulatory DNA-binding protein encoded by the merR gene: isolation and characterization. Science 235, 211214.
  • [138]
    Utschig, L.M., Bryson, J.W., O'Halloran, T.V. (1995) Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268, 380385.
  • [139]
    Brocklehurst, K.R., Hobman, J.L., Lawley, B., Blank, L., Marshall, S.J., Brown, N.L., Morby, A.P. (1998) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31, 893902.
  • [140]
    Hitomi, Y., Outten, C.E., O'Halloran, T.V. (2001) Extreme zinc-binding thermodynamics of the metal sensor/regulator protein, ZntR. J. Am. Chem. Soc. 123, 86148615.
  • [141]
    Outten, C.E., Outten, F.W., O'Halloran, T.V. (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem. 274, 3751737524.
  • [142]
    Xiong, A., Jayaswal, R.K. (1998) Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J. Bacteriol. 180, 40244029.
  • [143]
    Ralston, D.M., O'Halloran, T.V. (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87, 38463850.
  • [144]
    Wright, J.G. (1991) Spectroscopic and chemical characterization of the mercury receptor site in the transcriptional activator MerR. Ph.D. Dissertation. Northwestern University, Evanston, IL.
  • [145]
    Bontidean, I., Berggren, C., Johansson, G., Csoregi, E., Mattiasson, B., Lloyd, J.R., Jakeman, K.J., Brown, N.L. (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem. 70, 41624169.
  • [146]
    Bontidean, I., Lloyd, J.R., Hobman, J.L., Wilson, J.R., Csoregi, E., Mattiasson, B., Brown, N.L. (2000) Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J. Inorg. Biochem. 79, 225229.
  • [147]
    Parkhill, J., Brown, N.L. (1990) Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; The 19bp spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 18, 51575162.
  • [148]
    Frantz, B., O'Halloran, T.V. (1990) DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry 29, 47474751.
  • [149]
    Condee, C.W., Summers, A.O. (1992) A mer-lux transcriptional fusion for real-time examination of in vivo induction kinetics and promoter response to altered superhelicity. J. Bacteriol. 174, 80948101.
  • [150]
    Caslake, L.F., Ashraf, S.I., Summers, A.O. (1997) Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon. J. Bacteriol. 179, 17871795.
  • [151]
    O'Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M., Wright, J.G. (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56, 119129.
  • [152]
    Lee, I.W., Gambill, B.D., Summers, A.O. (1989) Translation of merD in Tn21. J. Bacteriol. 171, 22222225.
  • [153]
    Mukhopadhyay, D., Yu, H., Nucifora, G., Misra, T.K. (1991) Purification and functional characterization of MerD: A coregulator of the mercury resistance operon in Gram-negative bacteria. J. Biol. Chem. 266, 1853818542.
  • [154]
    Nucifora, G., Silver, S., Misra, T.K. (1990) Down regulation of the mercury resistance operon by the most promoter-distal gene merD. Mol. Gen. Genet. 220, 6972.
  • [155]
    Gambill, B.D., Summers, A.O. (1992) Synthesis and degradation of the mRNA of the Tn21 mer operon. J. Mol. Biol. 225, 251259.
  • [156]
    Hawkins, H.C., Freedman, R.B. (1976) Thiol-protein disulphide oxidoreductases. Biochem. J. 159, 385393.
  • [157]
    Liebert, C.A., Watson, A.L., Summers, A.O. (2000) The quality of merC, a module of the mer mosaic. J. Mol. Evol. 51, 607622.
  • [158]
    Foster, T.J. (1987) The genetics and biochemistry of mercury resistance. CRC Crit. Rev. Microbiol. 15, 117140.
  • [159]
    Summers, A.O. (1986) Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40, 607634.
  • [160]
    Bloomfield, V.A., Crothers, D.M. and Tinoco, I. Jr. (1974) Physical Chemistry of Nucleic Acids. Harper and Row, New York.
  • [161]
    Liebert, C.A., Hall, R.M., Summers, A.O. (1999) Tn21: Flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507522.
  • [162]
    Brown, N.L., Shih, Y.-C., Leang, C., Glendinning, K.J., Hobman, J.L., Wilson, J.R. (2002) Mercury transport and resistance. Biochem. Soc. Trans. 30, 715718.
  • [163]
    Wilson, J.R., Leang, C., Morby, A.P., Hobman, J.L., Brown, N.L. (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters. FEBS Lett. 472, 7882.
  • [164]
    Huang, C.-C., Narita, M., Yamagata, T., Itoh, Y., Endo, G. (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minimata Bay, Japan. Gene 234, 361369.
  • [165]
    Bull, P.C., Cox, D.W. (1994) Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10, 246252.
  • [166]
    O'Halloran, T.V., Culotta, V.C. (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 2505726060.
  • [167]
    Sahlman, L., Jonsson, B.-H. (1992) Purification and properties of the mercuric-ion-binding protein MerP. Eur. J. Biochem. 205, 375381.
  • [168]
    Sahlman, L., Skarfstad, E.G. (1993) Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem. Biophys. Res. Commun. 196, 583588.
  • [169]
    Morby, A.P., Hobman, J.L., Brown, N.L. (1995) The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol. Microbiol. 17, 2535.
  • [170]
    Qian, H., Sahlman, L., Eriksson, P.-O., Hambraeus, C., Edlund, U., Sethson, I. (1998) NMR solution structure of the oxidized form of MerP, a mercuric ion binding protein involved in bacterial mercuric ion resistance. Biochemistry 37, 93169322.
  • [171]
    Powlowski, J., Sahlman, L. (1999) Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. J. Biol. Chem. 274, 3332033326.
  • [172]
    Takahashi, N., Creighton, T.E. (1996) On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin. Biochemistry 35, 83428353.
  • [173]
    Grauschopf, U., Winther, J.R., Korber, P., Zander, T., Dallinger, P., Bardwell, J.C.A. (1995) Why is DsbA such an oxidizing disulfide catalyst. Cell 83, 947955.
  • [174]
    Rasmussen, L., Turner, R.R., Barkay, T. (1997) Cell-density-dependent sensitivity of a mer-lux bioassay. Appl. Environ. Microbiol. 63, 32913293.
  • [175]
    Barkay, T., Gillman, M., Turner, R.R. (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl. Environ. Microbiol. 63, 42674271.
  • [176]
    DeSilva, T., Veglia, G., Porcelli, F., Pranter, A.M., Opella, S.J. (2002) Selectivity in heavy metal-binding peptides and proteins. Biopolymers 64, 189197.
  • [177]
    Lund, P.A., Brown, N.L. (1987) Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene 52, 207214.
  • [178]
    Sahlman, L., Wong, W., Powlowski, J. (1997) A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance. J. Biol. Chem. 272, 2951829526.
  • [179]
    Wireman, J., Liebert, C.A., Smith, C.T., Summers, A.O. (1997) Association of mercury resistance and antibiotic resistance in the Gram negative fecal bacteria of primates. Appl. Environ. Microbiol. 63, 44944503.
  • [180]
    Kusano, T., Ji, G., Inoue, C., Silver, S. (1990) Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli. J. Bacteriol. 172, 26882692.
  • [181]
    Olson, B.H., Lester, J.N., Cayless, S.M., Ford, S. (1992) Distribution of mercury resistance determinants in bacterial communities of river sediments. Water Res. 23, 12091217.
  • [182]
    Kholodii, G.Y., Gorlenko, Z.M., Mindlin, S.Z., Hobman, J.L., Nikiforov, V.G. (2002) Tn5041-like transposons: molecular diversity, evolutionary relationships and distribution of distinct variants in environmental bacteria. Microbiology 148, 35693582.
  • [183]
    Solioz, M., Vulpe, C. (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21, 237241.
  • [184]
    Uno, Y., Kiyono, M., Tezuka, T., Pan-Hou, H. (1997) Phenylmercury transport mediated by merT-merP genes of Pseudomonas K-62 plasmid pMR26. Biol. Pharm. Bull. 20, 107109.
  • [185]
    Kiyono, M., Omura, T., Fujimori, H., Pan-Hou, H. (1995) Organomercurial resistance determinants in Pseudomonas K-62 are present on two plasmids. Arch. Microbiol. 163, 242247.
  • [186]
    Kiyono, M., Uno, Y., Omura, T., Pan-Hou, H. (2000) Role of MerT and MerP from Pseudomonas K-62 plasmid pMR26 in the transport of phenylmercury. Biol. Pharm. Bull. 23, 279282.
  • [187]
    Kiyono, M., Pan-Hou, H. (1999) The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J. Bacteriol. 181, 726730.
  • [188]
    Summers, A.O., Kight-Olliff, L., Slater, C. (1982) Effect of catabolite repression of the mer operon. J. Bacteriol. 149, 191197.
  • [189]
    Selinofova, O.V., Barkay, T. (1994) Role of Na+ in the transport of Hg2+ and induction of the Tn21 mer operon. Appl. Environ. Microbiol. 60, 35033507.
  • [190]
    Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G., Bremer, E. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in Salmonella typhimurium and Escherichia coli. Cell 52, 569584.
  • [191]
    Furukawa, K., Tonomura, K. (1972) Metallic mercury releasing enzyme in mercury-resistant Pseudomonas. Agric. Biol. Chem. 36, 217226.
  • [192]
    Tezuka, T., Tonomura, K. (1976) Purification and properties of an enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62 strain. I. Splitting enzyme 1. J. Biochem. (Tokyo) 80, 7987.
  • [193]
    Izaki, K., Tashiro, Y., Funaba, T. (1974) Mechanism of mercuric chloride resistance in microorganisms. 3. Purification and properties of a mercuric ion reducing enzyme from Escherichia coli bearing R factor. J. Biochem. (Tokyo) 75, 591599.
  • [194]
    Schottel, J.L. (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253, 43414349.
  • [195]
    Fox, B., Walsh, C.T. (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J. Biol. Chem. 257, 24982503.
  • [196]
    Fox, B.S., Walsh, C.T. (1983) Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. Biochemistry 22, 40824088.
  • [197]
    Sahlman, L., Lindskog, S. (1983) A stopped-flow study of the reaction between mercuric reductase and NADPH. Biochem. Biophys. Res. Commun. 117, 231237.
  • [198]
    Rinderle, S.J., Booth, J.E., Williams, J.W. (1983) Mercuric reductase from R-plasmid NR1: characterization and mechanistic study. Biochemistry 22, 869876.
  • [199]
    Williams, C.H. Jr. (1992) In: Chemistry and Biochemistry of Flavoenzymes, Vol. 3 (Müller, F., Ed.), pp. 121–211. CRC Press, Boca Raton, FL.
  • [200]
    Brown, N.L., Ford, S.J., Pridmore, R.D., Fritzinger, D.C. (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22, 40894095.
  • [201]
    Thieme, R., Pai, E.F., Schirmer, R.H., Schulz, G.E. (1981) Three-dimensional structure of glutathione reductase at 2 Å resolution. J. Mol. Biol. 152, 763782.
  • [202]
    Miller, S.M., Ballou, D.P., Massey, V. C.H. Williams Jr. Walsh, C.T. (1986) Two-electron reduced mercuric reductase binds Hg(II) to the active site dithiol but does not catalyze Hg(II) reduction. J. Biol. Chem. 261, 80818084.
  • [203]
    Sahlman, L., Lambeir, A.M., Lindskog, S., Dunford, H.B. (1984) The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. J. Biol. Chem. 259, 1240312408.
  • [204]
    Sahlman, L., Lambeir, A.M., Lindskog, S. (1986) Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. Eur. J. Biochem. 156, 479488.
  • [205]
    Sandstrom, A., Lindskog, S. (1988) Rapid-scan stopped-flow studies of the flavoenzyme mercuric reductase during catalytic turnover. Eur. J. Biochem. 173, 411415.
  • [206]
    Schiering, N., Kabsch, W., Moore, M.J., Distefano, M.D., Walsh, C.T., Pai, E.F. (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352, 168172.
  • [207]
    Schultz, P.G., Au, K.G., Walsh, C.T. (1985) Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase. Biochemistry 24, 68406848.
  • [208]
    Distefano, M.D., Au, K.G., Walsh, C.T. (1989) Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry. Biochemistry 28, 11681183.
  • [209]
    Miller, S.M., Massey, V., Ballou, D. C.H. Williams Jr. Distefano, M.D., Moore, M.J., Walsh, C.T. (1990) Use of a site-directed triple mutant to trap intermediates: demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase. Biochemistry 29, 28312841.
  • [210]
    Moore, M.J., Walsh, C.T. (1989) Mutagenesis of the N- and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials. Biochemistry 28, 11831194.
  • [211]
    Moore, M., Distefano, M., Walsh, C., Miller, S., Massey, V., Williams, C.H.J. and Ballou, D. (1987) The penultimate cysteines in mercuric reductase aid in the reduction of mercury. In: Flavins and Flavoproteins 1987 (Edmondson, D.E. and McCormick, D.B., Eds.), pp. 41–44. Walter de Gruyter, Berlin.
  • [212]
    Miller, S.M., Moore, M.J., Massey, V. C.H. Williams Jr. Distefano, M.D., Ballou, D.P., Walsh, C.T. (1989) Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry 28, 11941205.
  • [213]
    Sandstrom, A., Lindskog, S. (1987) Activation of mercuric reductase by the substrate NADPH. Eur. J. Biochem. 164, 243249.
  • [214]
    Distefano, M.D., Moore, M.J., Walsh, C.T. (1990) Active site of mercuric reductase resides at the subunit interface and requires Cys135 and Cys140 from one subunit and Cys558 and Cys559 from the adjacent subunit: evidence from in vivo and in vitro heterodimer formation. Biochemistry 29, 27032713.
  • [215]
    Moore, M.J., Miller, S.M., Walsh, C.T. (1992) C-terminal cysteines of Tn501 mercuric ion reductase. Biochemistry 31, 16771685.
  • [216]
    Cotton, F.A., Wilkinson, G., Murillo, C. and Grimes, R.N. (1999) Advanced Inorganic Chemistry, pp. 598–617. John Wiley and Sons, New York.
  • [217]
    Engst, S., Miller, S.M. (1998) Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate. Biochemistry 37, 1149611507.
  • [218]
    Engst, S., Miller, S.M. (1999) Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands. Biochemistry 38, 35193529.
  • [219]
    Engst, S., Miller, S.M. (1999) Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate – Correction. Biochemistry 38, 853854.
  • [220]
    Rennex, D., Pickett, M., Bradley, M. (1994) In vivo and in vitro effects of mutagenesis of active site tyrosine residues of mercuric reductase. FEBS Lett. 355, 220222.
  • [221]
    Rennex, D., Cummings, R.T., Pickett, M., Walsh, C.T., Bradley, M. (1993) Role of tyrosine residues in Hg(II) detoxification by mercuric reductase from Bacillus sp. strain RC607. Biochemistry 32, 74757478.
  • [222]
    Moore, M.J., Distefano, M.D., Walsh, C.T., Schiering, N., Pai, E.F. (1989) Purification, crystallization, and preliminary x-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. J. Biol. Chem. 264, 1438614388.
  • [223]
    Miller, S.M. (1999) Construction of separate expression vectors for the catalytic core and the N-terminal metal binding domain of Tn501 mercuric ion reductase. In: Flavins and Flavoproteins 1999 (Ghisla, S., Kroneck, P., Macheroux, P. and Sund, H., Eds.), pp. 863–870. Rudolf Weber Agency for Scientific Publications, Berlin.
  • [224]
    Miller, S.M., Massey, V. C.H. Williams Jr. Ballou, D.P., Walsh, C.T. (1991) Communication between the active sites in dimeric mercuric ion reductase: an alternating sites hypothesis for catalysis. Biochemistry 30, 26002612.
  • [225]
    Misra, T.K., Brown, N.L., Fritzinger, D.C., Pridmore, R.D., Barnes, W.M., Haberstroh, L., Silver, S. (1984) Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA 81, 59755979.
  • [226]
    Arnesano, F., Banci, L., Bertini, I., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40, 15281539.
  • [227]
    Banci, L., Bertini, I., Ciofi-Baffoni, S., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J. Biol. Chem. 276, 84158426.
  • [228]
    Banci, L., Bertini, I., del Conte, R., Markey, J., Ruiz-Duenas, F.J. (2001) Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40, 1566015668.
  • [229]
    Gitschier, J., Moffat, B., Reilly, D., Wood, W.I., Fairbrother, W.J. (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat. Struct. Biol. 5, 4754.
  • [230]
    Qian, H., Sahlman, L., Eriksson, P.O., Hambraeus, C., Edlund, U., Sethson, I. (1998) NMR solution structure of the oxidized form of MerP, a mercuric ion binding protein involved in bacterial mercuric ion resistance. Biochemistry 37, 93169322.
  • [231]
    Rosenzweig, A.C., Huffman, D.L., Hou, M.Y., Wernimont, A.K., Pufahl, R.A., O'Halloran, T.V. (1999) Crystal structure of the Atx1 metallochaperone protein at 1.02 Å resolution. Struct. Fold. Des. 7, 605617.
  • [232]
    Hubbard, T.J., Ailey, B., Brenner, S.E., Murzin, A.G., Chothia, C. (1999) SCOP: a Structural Classification of Proteins database. Nucleic Acids Res. 27, 254256.
  • [233]
    Newton, G.L. and Fahey, R.C. (1989) Glutathione in procaryotes. In: Glutathione: Metabolism and Physiological Functions (Viña, J., Ed.), pp. 69–77. CRC Press, Boca Raton, FL.
  • [234]
    Newton, G.L., Arnold, K., Price, M.S., Sherrill, C., Delcardayre, S.B., Aharonowitz, Y., Cohen, G., Davies, J., Fahey, R.C., Davis, C. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol. 178, 19901995.
  • [235]
    Furukawa, K., Tonomura, K. (1971) Enzyme system involved in the decomposition of phenyl mercuric acetate by mercury-resistant Pseudomonas. Agric. Biol. Chem. 35, 604610.
  • [236]
    Tezuka, T., Tonomura, K. (1978) Purification and properties of a second enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62. J. Bacteriol. 135, 138143.
  • [237]
    Weiss, A.A., Murphy, S.D., Silver, S. (1977) Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. J. Bacteriol. 132, 197208.
  • [238]
    Begley, T.P., Walts, A.E., Walsh, C.T. (1986) Bacterial organo-mercurial lyase: overproduction, isolation and characterization. Biochemistry 25, 71867192.
  • [239]
    Begley, T.P., Walts, A.E., Walsh, C.T. (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25, 71927200.
  • [240]
    Gopinath, E., Bruice, T.C. (1987) Assistance of protodemercuration by bis-thiol ligation and nucleophilic catalysis. A model study which relates to the organomercurial lyase. J. Am. Chem. Soc. 109, 79037905.
  • [241]
    Pitts, K.E., Summers, A.O. (2002) The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry 41, 1028710296.
  • [242]
    Ogawa, H.I., Tolle, C.L., Summers, A.O. (1984) Physical and genetic map of the organomercury resistance (Omr) and inorganic mercury (Hgr) loci of the IncM plasmid R831b. Gene 32, 311320.
  • [243]
    Griffin, H.G., Foster, T.J., Silver, S., Misra, T.K. (1987) Cloning and DNA sequence of the mercuric and organomercurial-resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci. USA 84, 31123116.
  • [244]
    Nucifora, G., Chu, L., Silver, S., Misra, T. (1989) Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol. 171, 42414247.
  • [245]
    Kholodii, G., Gorlenko, Z., Mindlin, S., Hobman, J., Nikiforov, V. (2002) Tn5041-like transposons: molecular diversity, evolutionary relationships and distribution of distinct variants in environmental bacteria. Microbiology 148, 35693582.
  • [246]
    Laddaga, R.A., Chu, L., Misra, T.K., Silver, S. (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 84, 51065110.
  • [247]
    Wang, Y., Moore, M., Levinson, H.S., Silver, S., Walsh, C., Mahler, I. (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J. Bacteriol. 171, 8392.
  • [248]
    Sedlmeier, R., Altenbuchner, J. (1992) Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. Mol. Gen. Genet. 236, 7685.
  • [249]
    Ravel, J., Schrempf, H., Hill, R.T. (1998) Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake Bay Streptomyces strains. Appl. Environ. Microbiol. 64, 33833388.
  • [250]
    Brown, N.L., Misra, T.K., Winnie, J.N., Schmidt, A., Seiff, M., Silver, S. (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202, 143151.
  • [251]
    Inoue, C., Sugawara, K., Kusano, T. (1991) The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol. Microbiol. 5, 27072718.
  • [252]
    Kiyono, M., Omura, T., Inuzuka, M., Fujimori, H., Pan-Hou, H. (1997) Nucleotide sequence and expression of the organomercurial-resistance determinants from a Pseudomonas K-62 plasmid pMR26. Gene 189, 151157.
  • [253]
    Iohara, K., Iiyama, R., Nakamura, K., Silver, S., Sakai, M., Takeshita, M., Furukawa, K. (2001) The mer operon of a mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan. Appl. Microbiol. Biotechnol. 56, 736741.
  • [254]
    Osborn, A.M., Bruce, K.D., Ritchie, D.A., Strike, P. (1996) The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. Microbiology 142, 337345.
  • [255]
    Bogdanova, E.S., Bass, I.A., Minakhin, L.S., Petrova, M.A., Mindlin, S.Z., Volodin, A.A., Kalyaeva, E.S., Tiedje, J.M., Hobman, J.L., Brown, N.L., Nikiforov, V.G. (1998) Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology 144, 609620.
  • [256]
    Nakaya, R., Nakamura, A., Murata, Y. (1960) Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. 3, 654659.
  • [257]
    Grinsted, J., de la Cruz, F., Schmidt, R. (1990) The Tn21 subgroup of bacterial transposable elements. Plasmid 24, 163189.
  • [258]
    Mindlin, S., Kholodii, G., Gorlenko, Z., Minakhina, S., Minakhin, L., Kalyaeva, E., Kopteva, A., Petrova, M., Yurieva, O., Nikiforov, V. (2001) Mercury resistance transposons of Gram-negative environmental bacteria and their classification. Res. Microbiol. 152, 811822.
  • [259]
    Partridge, S.R., Brown, H.J., Stokes, H.W., Hall, R.M. (2001) Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob. Agents Chemother. 45, 12631270.
  • [260]
    Bogdanova, E., Minakhin, L., Bass, I., Volodin, A., Hobman, J.L., Nikiforov, V. (2001) Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Res. Microbiol. 152, 503514.
  • [261]
    Bass, L., Liebert, C.A., Lee, M.D., Summers, A.O., White, D.G., Thayer, S.G., Maurer, J.J. (1999) Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother. 43, 29252929.
  • [262]
    Pearson, A.J., Bruce, K.D., Osborn, A.M., Ritchie, D.A., Strike, P. (1996) Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes. Appl. Environ. Microbiol. 62, 29612965.
  • [263]
    Holt, R.J., Bruce, K.D., Strike, P. (1999) Conservation of transposon structures in soil bacteria. FEMS Microbiol. Ecol. 30, 2537.
  • [264]
    Bruce, K.D., Osborn, A.M., Pearson, A.J., Strike, P., Ritchie, D.A. (1995) Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria. Mol. Ecol. 4, 605612.
  • [265]
    Kholodii, G., Yurieva, O.V., Lomovskaya, O.L., Gorlenko Zh, M., Mindlin, S.Z., Nikiforov, V.G. (1993) Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230, 11031107.
  • [266]
    Essa, A.M., Julian, D.J., Kidd, S.P., Brown, N.L., Hobman, J.L. (2003) Mercury resistance determinants related to Tn21, Tn1696, and Tn5053 in enterobacteria from the preantibiotic era. Antimicrob. Agents Chemother. 47, 11151119.
  • [267]
    Hansen, C.L., Zwolinski, G., Martin, D., Williams, J.W. (1984) Bacterial removal of mercury from sewage. Biotechnol. Bioeng. 26, 13301333.
  • [268]
    Wagner-Döbler, I., Van Canstein, H.F., Li, Y., Timmis, K.N., Deckwer, W.D. (2000) Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ. Sci. Technol. 34, 46284634.
  • [269]
    von Canstein, H., Li, Y., Leonhauser, J., Haase, E., Felske, A., Deckwer, W.D., Wagner-Dobler, I. (2002) Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl. Environ. Microbiol. 68, 19381946.
  • [270]
    Wagner-Döbler, I., Lunsdorf, H., Lubbehusen, T., von Canstein, H.F., Li, Y. (2000) Structure and species composition of mercury-reducing biofilms. Appl. Environ. Microbiol. 66, 45594563.
  • [271]
    von Canstein, H.F., Li, Y., Felske, A., Wagner-Dobler, I. (2001) Long-term stability of mercury-reducing microbial biofilm communities analyzed by 16S-23S rDNA interspacer region polymorphism. Microb. Ecol. 42, 624634.
  • [272]
    von Canstein, H., Kelly, S., Li, Y., Wagner-Dobler, I. (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl. Environ. Microbiol. 68, 28292837.
  • [273]
    Kim, C.S., Brown, G.E., Rytuba, J.J. (2000) Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy. Sci. Total Environ. 261, 157168.
  • [274]
    Baldi, F., Olson, G.J. (1987) Effects of cinnabar on pyrite oxidation by Thiobacillus ferrooxidans and cinnabar mobilization by a mercury-resistant strain. Appl. Environ. Microbiol. 53, 772776.
  • [275]
    Saouter, E., Gillman, M., Barkay, T. (1995) An evaluation of mer-specified reduction of ionic mercury as a remedial tool of a mercury-contaminated freshwater pond. J. Ind. Microbiol. 14, 343348.
  • [276]
    Brim, H., McFarlan, S.C., Fredrickson, J.K., Minton, K.W., Zhai, M., Wackett, L.P., Daly, M.J. (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat. Biotechnol. 18, 8590.
  • [277]
    Daly, M.J. (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr. Opin. Biotechnol. 11, 280285.
  • [278]
    Horn, J.M., Brunke, M., Deckwer, W.D., Timmis, K.N. (1994) Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl. Environ. Microbiol. 60, 357362.
  • [279]
    Brunke, M., Deckwer, W.-D., Frischmuth, A., Horn, J.M., Lunsdorf, H., Rhode, M., Rohricht, K.N., Timmis, K.N., Weppen, P. (1993) Microbial retention of mercury from waste streams in a laboratory column containing merA gene bacteria. FEMS Microbiol. Rev. 11, 145152.
  • [280]
    Chen, S., Wilson, D.B. (1997) Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl. Environ. Microbiol. 63, 24422445.
  • [281]
    Chen, S., Kim, E., Shuler, M.L., Wilson, D.B. (1998) Hg2+ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14, 667671.
  • [282]
    Deng, X., Wilson, D.B. (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 56, 276279.
  • [283]
    Meagher, R.B., Rugh, C.L., Kandasamy, M.K., Gragson, G. and Wang, N.J. (1999) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Phytoremediaiton of Contaminated Soil and Water (Bañuelos, G., Ed.), pp. 201–219. Lewis Publishers, Boca Raton, FL.
  • [284]
    Rugh, C.L., Senecoff, J.F., Meagher, R.B., Merkle, S.A. (1998) Development of transgenic yellow-poplar for mercury phytoremediation. Nat. Biotechnol. 33, 616621.
  • [285]
    Bizily, S.P., Rugh, C.L., Meagher, R.B. (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18, 213217.
  • [286]
    Bizily, S.P., Rugh, C.L., Summers, A.O., Meagher, R.B. (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA 96, 68086813.
  • [287]
    Bizily, S.P., Kim, T., Kandasamy, M.K., Meagher, R.B. (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol. 131, 463471.
  • [288]
    Selinofova, O., Burlage, R., Barkay, T. (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl. Environ. Microbiol. 59, 30833090.
  • [289]
    Hansen, L.H., Sorensen, S.J. (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol. Lett. 193, 123127.
  • [290]
    Barkay, T., Turner, R.R., Rasmussen, L.D., Kelly, C.A., Rudd, J.W. (1998) Luminescence facilitated detection of bioavailable mercury in natural waters. Methods Mol. Biol. 102, 231246.
  • [291]
    Selifonova, O.V., Barkay, T. (1994) Role of Na+ in transport of Hg2+ and induction of the Tn21 mer operon. Appl. Environ. Microbiol. 60, 35033507.
  • [292]
    US Environmental Protection Agency. (1994) Toxicological profile for mercury. US Government Printing Office, Washington, DC.
  • [293]
    Cooper, C.E., Patel, R.P., Brookes, P.S., Darley-Usmar, V.M. (2002) Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem. Sci. 27, 489492.
  • [294]
    Kim, S.O., Merchant, K., Nudelman, R., Beyer, W.F.Jr., Keng, T., DeAngelo, J., Hausladen, A., Stamler, J.S. (2002) OxyR: a molecular code for redox-related signaling. Cell 109, 383396.
  • [295]
    Hidalgo, E., Leautaud, V., Demple, B. (1998) The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO J. 17, 26292636.