• [1]
    Ohtake, H, Cervantes, C, Silver, S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169, 38533856.
  • [2]
    Silver, S, Phung, L.T (1996) Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753789.
  • [3]
    Broer, S, Ji, G, Broer, A, Silver, S (1993) Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. J. Bacteriol. 175, 34803485.
  • [4]
    Brown, N.L, Misra, T.K, Winnie, J.N, Schmidt, A, Seiff, M, Silver, S (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202, 143151.
  • [5]
    Endo, G, Silver, S (1995) CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177, 44374441.
  • [6]
    Silver, S, Budd, K, Leahy, K.M, Shaw, W.V, Hammond, D, Novick, R.P, Willsky, G.R, Malamy, M.H, Rosenberg, H (1981) Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146, 983996.
  • [7]
    Silver, S, Misra, T.K, Laddaga, R.A (1989) DNA sequence analysis of bacterial toxic heavy metal resistances. Biol. Trace Elem. Res. 21, 145163.
  • [8]
    Silver, S (1992) Plasmid-determined metal resistance mechanisms: range and overview. Plasmid 27, 13.
  • [9]
    Silver, S., Lee, B.T.O., Brown, N.L. and Cooksey, D.A. (1993) Bacterial plasmid resistances to copper, cadmium, and zinc. In: Chemistry of Copper and Zinc Triads (Welch, A.J. and Chapman, S.K., Eds.), pp. 38–53. The Royal Society of Chemistry, London.
  • [10]
    Silver, S, Ji, G (1994) Newer systems for bacterial resistances to toxic heavy metals. Environ. Health Perspect. 102, 107113.
  • [11]
    Silver, S. and Walderhaug, M. (1995) Bacterial plasmid-mediated resistances to mercury, cadmium and copper. In: Toxicology of Metals. Biochemical Aspects (Goyer, R.A. and Cherian, M.G., Eds.), pp. 435–458. Springer Verlag, Berlin.
  • [12]
    Summers, A.O, Silver, S (1972) Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112, 12281236.
  • [13]
    Nucifora, G, Chu, L, Misra, T.K, Silver, S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86, 35443548.
  • [14]
    Nies, D.H (2000) Heavy metal resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia spec. CH34. Extremophiles 4, 7782.
  • [15]
    Goris, J, De Vos, P, Coenye, T, Hoste, B, Janssens, D, Brim, H, Diels, L, Mergeay, M, Kersters, K, Vandamme, P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al., 1998 emend. Int. J. Syst. Evol. Microbiol. 51, 17731782.
  • [16]
    Diels, L, Mergeay, M (1990) DNA probe-mediated detection of resistant bacteria from soils highy polluted by heavy metals. Appl. Environ. Microbiol. 56, 14851491.
  • [17]
    Mergeay, M, Monchy, S, Vallaeys, T, Auquier, V, Bentomane, A, Bertin, P, Taghavi, S, Dunn, J, van der Lelie, D, Wattiez, R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27, 385410.
  • [18]
    Nies, D.H (1999) Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51, 730750.
  • [19]
    Mergeay, M, Nies, D, Schlegel, H.G, Gerits, J, Charles, P, Van Gijsegem, F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162, 328334.
  • [20]
    Mukhopadhyay, R, Rosen, B.P, Pung, L.T, Silver, S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311325.
  • [21]
    Weast, R.C. (1984) CRC Handbook of Chemistry and Physics, 64th edn. CRC Press, Boca Raton, FL.
  • [22]
    M.H Saier Jr. Tam, R, Reizer, A, Reizer, J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11, 841847.
  • [23]
    Tseng, T.-T, Gratwick, K.S, Kollman, J, Park, D, Nies, D.H, Goffeau, A, Saier, M.H.J (1999) The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107125.
  • [24]
    Brown, D.E, Thrall, M.A, Walkley, S.U, Wurzelmann, S, Wenger, D.A, Allison, R.W, Just, C.A (1996) Metabolic abnormalities in feline Niemann-Pick type C heterozygotes. J. Inherit. Metab. Dis. 19, 319330.
  • [25]
    Campo, J.V, Stowe, R, Slomka, G, Byler, D, Gracious, B (1998) Psychosis as a presentation of physical disease in adolescence: a case of Niemann-Pick disease, type C. Dev. Med. Child. Neurol. 40, 126129.
  • [26]
    Carstea, E.D, Morris, J.A, Coleman, K.G, Loftus, S.K, Zhang, D, Cummings, C, Gu, J, Rosenfeld, M.A, Pavan, W.J, Krizman, D.B, Nagle, J, Polymeropoulos, M.H, Sturley, S.L, Ioannou, Y.A, Higgins, M.E, Comly, M, Cooney, A, Brown, A, Kaneski, C.R, Blanchette Mackie, E.J, Dwyer, N.K, Neufeld, E.B, Chang, T.Y, Liscum, L, Tagle, D.A (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228231.
  • [27]
    Erickson, R.P, Aviles, R.A, Zhang, J, Kozloski, M.A, Garver, W.S, Heidenreich, R.A (1997) High-resolution mapping of the spm (Niemann-Pick type C) locus on mouse chromosome 18. Mamm. Genome 8, 355356.
  • [28]
    Garver, W.S, Erickson, R.P, Wilson, J.M, Colton, T.L, Hossain, G.S, Kozloski, M.A, Heidenreich, R.A (1997) Altered expression of caveolin-1 and increased cholesterol in detergent insoluble membrane fractions from liver in mice with Niemann-Pick disease type C. Biochim. Biophys. Acta 1361, 272280.
  • [29]
    Garver, W.S, Hsu, S.C, Erickson, R.P, Greer, W.L, Byers, D.M, Heidenreich, R.A (1997) Increased expression of caveolin-1 in heterozygous Niemann-Pick type II human fibroblasts. Biochem. Biophys. Res. Commun. 236, 189193.
  • [30]
    Gillan, T.L, Byers, D.M, Riddell, D.C, Neumann, P.E, Greer, W.L (1997) Limiting the Niemann-Pick type C critical region to a 1-cM interval. Clin. Invest. Med. 20, 339343.
  • [31]
    Goodrum, J.F, Pentchev, P.G (1997) Cholesterol reutilization during myelination of regenerating PNS axons is impaired in Niemann-Pick disease type C mice. J. Neurosci. Res. 49, 389392.
  • [32]
    Greer, W.L, Riddell, D.C, Byers, D.M, Welch, J.P, Girouard, G.S, Sparrow, S.M, Gillan, T.L, Neumann, P.E (1997) Linkage of Niemann-Pick disease type D to the same region of human chromosome 18 as Niemann-Pick disease type C. Am. J. Hum. Genet. 61, 139142.
  • [33]
    Greer, W.L, Riddell, D.C, Gillan, T.L, Girouard, G.S, Sparrow, S.M, Byers, D.M, Dobson, M.J, Neumann, P.E (1998) The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097[RIGHTWARDS ARROW]T transversion in NPC1. Am. J. Hum. Genet. 63, 5254.
  • [34]
    Gu, J.Z, Carstea, E.D, Cummings, C, Morris, J.A, Loftus, S.K, Zhang, D, Coleman, K.G, Cooney, A.M, Comly, M.E, Fandino, L, Roff, C, Tagle, D.A, Pavan, W.J, Pentchev, P.G, Rosenfeld, M.A (1997) Substantial narrowing of the Niemann-Pick C candidate interval by yeast artificial chromosome complementation. Proc. Natl. Acad. Sci. USA 94, 73787383.
  • [35]
    Kovesi, T.A, Lee, J, Shuckett, B, Clarke, J.T, Callahon, J.W, Phillips, M.J (1996) Pulmonary infiltration in Niemann-Pick disease type C. J. Inherit. Metab. Dis. 19, 792793.
  • [36]
    Lange, Y, Steck, T.L (1998) Four cholesterol-sensing proteins. Curr. Opin. Struct. Biol. 8, 435439.
  • [37]
    Liscum, L, Klansek, J.J (1998) Niemann-Pick disease type C. Curr. Opin. Lipidol. 9, 131135.
  • [38]
    Osborne, T.F, Rosenfeld, J.M (1998) Related membrane domains in proteins of sterol sensing and cell signaling provide a glimpse of treasures still buried within the dynamic realm of intracellular metabolic regulation. Curr. Opin. Lipidol. 9, 137140.
  • [39]
    Schiffmann, R (1996) Niemann-Pick disease type C. From bench to bedside. J. Am. Med. assoc. 276, 561564.
  • [40]
    Schedin, S, Sindelar, P.J, Pentchev, P, Brunk, U, Dallner, G (1997) Peroxisomal impairment in Niemann-Pick type C disease. J. Biol. Chem. 272, 62456251.
  • [41]
    Suresh, S, Yan, Z, Patel, R.C, Patel, Y.C, Patel, S.C (1998) Cellular cholesterol storage in the Niemann-Pick disease type C mouse is associated with increased expression and defective processing of apolipoprotein D. J. Neurochem. 70, 242251.
  • [42]
    Schofer, O, Mischo, B, Puschel, W, Harzer, K, Vanier, M.T (1998) Early-lethal pulmonary form of Niemann-Pick type C disease belonging to a second, rare genetic complementation group. Eur. J. Pediatr. 157, 4549.
  • [43]
    Sequeira, J.S, Vellodi, A, Vanier, M.T, Clayton, P.T (1998) Niemann-Pick disease type C and defective peroxisomal beta-oxidation of branched-chain substrates. J. Inherit. Metab. Dis. 21, 149154.
  • [44]
    Steinberg, S.J, Mondal, D, Fensom, A.H (1996) Co-cultivation of Niemann-Pick disease type C fibroblasts belonging to complementation groups alpha and beta stimulates LDL-derived cholesterol esterification. J. Inherit. Metab. Dis. 19, 769774.
  • [45]
    Lange, Y, Ye, J, Steck, T.L (1998) Circulation of cholesterol between lysosomes and the plasma membrane. J. Biol. Chem. 273, 1891518922.
  • [46]
    Saier, M.H.J (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354411.
  • [47]
    Johnson, J.M, Church, G.M (1999) Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J. Mol. Biol. 287, 695715.
  • [48]
    Andersen, C, Hughes, C, Koronakis, V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr. Opin. Cell Biol. 13, 412416.
  • [49]
    Paulsen, I.T, Park, J.H, Choi, P.S, Saier, M.H.J (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett. 156, 18.
  • [50]
    Zgurskaya, H.I, Nikaido, H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37, 219225.
  • [51]
    Zgurskaya, H.I, Nikaido, H (1999) Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 71907195.
  • [52]
    Zgurskaya, H.I, Nikaido, H (1999) AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285, 409420.
  • [53]
    Zgurskaya, H.I, Nikaido, H (2000) Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J. Bacteriol. 182, 42644267.
  • [54]
    Nies, D, Mergeay, M, Friedrich, B, Schlegel, H.G (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J. Bacteriol. 169, 48654868.
  • [55]
    Nies, D.H, Nies, A, Chu, L, Silver, S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86, 73517355.
  • [56]
    Kunito, T, Kusano, T, Oyaizu, H, Senoo, K, Kanazawa, S, Matsumoto, S (1996) Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. Biosci. Biotechnol. Biochem. 60, 699704.
  • [57]
    van der Lelie, D, Schwuchow, T, Schwidetzky, U, Wuertz, S, Baeyens, W, Mergeay, M, Nies, D.H (1997) Two component regulatory system involved in transcriptional control of heavy metal homoeostasis in Alcaligenes eutrophus. Mol. Microbiol. 23, 493503.
  • [58]
    Große, C, Grass, G, Anton, A, Franke, S, Navarrete Santos, A, Lawley, B, Brown, N.L, Nies, D.H (1999) Transcriptional organization of the czc heavy metal homoeostasis determinant from Alcaligenes eutrophus. J. Bacteriol. 181, 23852393.
  • [59]
    Nies, D.H. and Brown, N.L. (1998) Two-component systems in the regulation of heavy metal resistance. In: Metal Ions in Gene Regulation (Silver, S. and Walden, W., Eds.), pp. 77–103. Chapman and Hall, London.
  • [60]
    Nies, D.H (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligenes eutrophus. J. Bacteriol. 174, 81028110.
  • [61]
    Nies, D.H, Silver, S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171, 896900.
  • [62]
    Nies, D.H (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton-antiporter in Escherichia coli. J. Bacteriol. 177, 27072712.
  • [63]
    Sensfuss, C, Schlegel, H.G (1988) Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol. Lett. 55, 295298.
  • [64]
    Liesegang, H, Lemke, K, Siddiqui, R.A, Schlegel, H.-G (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175, 767778.
  • [65]
    Grass, G, Große, C, Nies, D.H (2000) Regulation of the cnr cobalt/nickel resistance determinant from Ralstonia sp. CH34. J. Bacteriol. 182, 13901398.
  • [66]
    Tibazarwa, C, Wuertz, S, Mergeay, M, Wyns, L, van der Lelie, D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J. Bacteriol. 182, 13991409.
  • [67]
    Schmidt, T, Schlegel, H.G (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176, 70457054.
  • [68]
    Legatzki, A., Franke, S., Lucke, S., Hoffmann, T., Anton, A., Neumann, D. and Nies, D.H. (2003) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation (in press).
  • [69]
    Goldberg, M, Pribyl, T, Juhnke, S, Nies, D.H (1999) Energetics and topology of CzcA, a cation/proton antiporter of the RND protein family. J. Biol. Chem. 274, 2606526070.
  • [70]
    Outten, C.E, O'Halloran, T.V (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 24882492.
  • [71]
    Fahey, R.C, Wc, B, Adams, W.B, Worsham, M.B (1978) Occurrence of glutathione in bacteria. J. Bacteriol. 133, 11261129.
  • [72]
    McLaggan, D, Logan, T.M, Lynn, D.G, W, E (1990) Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli. J. Bacteriol. 172, 36313636.
  • [73]
    Fahey, R.C (2001) Novel thiols of prokaryotes. Annu. Rev. Microbiol. 55, 333356.
  • [74]
    Oram, P.D, Fang, X, Fernando, Q, Letkeman, P, Letkeman, D (1996) The formation constants of mercury(II)-glutathione complexes. Chem. Res. Toxicol. 9, 709712.
  • [75]
    Osterberg, R, Ligaarden, R, Persson, D (1979) Copper(I) complexes of penicillamine and glutathione. J. Inorg. Biochem. 10, 341355.
  • [76]
    Rae, T.D, Schmidt, P.J, Pufahl, R.A, Culotta, V.C, O’ Halloran, T.V (1999) Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 284, 805808.
  • [77]
    Dominey, L.A, Kustin, K (1983) Kinetics and mechanism of Zn(II) complexation with reduced glutathione. J. Inorg. Biochem. 18, 153160.
  • [78]
    Brown, N.L, Camakaris, J, Lee, B.T, Williams, T, Morby, A.P, Parkhill, J, Rouch, D.A (1991) Bacterial resistances to mercury and copper. J. Cell. Biochem. 46, 106114.
  • [79]
    Brown, N.L, Rouch, D.A, Lee, B.T.O (1992) Copper resistance determinants in bacteria. Plasmid 27, 4151.
  • [80]
    Brown, N.L., Lee, B.T.O. and Silver, S. (1993) Bacterial transport of and resistance to copper. In: Metal Ions in Biological Systems, Vol. 30 (Sigel, H. and Sigel, A., Eds.), pp. 405–430. Marcel Dekker, New York.
  • [81]
    Brown, N.L, Barrett, S.R, Camakaris, J, Lee, B.T, Rouch, D.A (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17, 11531166.
  • [82]
    Bryson, J.W., O'Halloran, T.V., Rouch, D.A., Brown, N.L., Camakaris, J. and Lee, B.T.O. (1993) Chemical and genetic studies of copper resistance in E. coli. In: Bioinorganic Chemistry of Copper (Karlin, K.D. and Tylekar, Z., Eds.), pp. 101–109. Chapman and Hall, New York.
  • [83]
    Lee, S.M, Grass, G, Rensing, C, Barrett, S.R, Yates, C.J, Stoyanov, J.V, Brown, N.L (2002) The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun. 295, 616620.
  • [84]
    Lee, B.T.O., Brown, N.L., Rogers, S., Bergemann, A., Camakaris, J. and Rouch, D.A. (1990) Bacterial response to copper in the environment: Escherichia coli as a model system. In: Metal Speciation in the Environment (Gucer, S. and Broeckaert, J.A.C., Eds.). Springer-Verlag, New York.
  • [85]
    Rouch, D.A, Brown, N.L (1997) Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 141, 11911202.
  • [86]
    Williams, J.R, Morgan, A, Rouch, D.A, Brown, N.L, Lee, B.T.O (1993) Copper resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59, 25312537.
  • [87]
    Rensing, C, Fan, B, Sharma, R, Mitra, B, Rosen, B.P (2000) CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652656.
  • [88]
    Rensing, C, Grass, G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197213.
  • [89]
    Rensing, C, Ghosh, M, Rosen, B.P (1999) Families of soft-metal-ion-transporting ATPases. J. Bacteriol. 181, 58915897.
  • [90]
    Franke, S, Grass, G, Nies, D.H (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147, 965972.
  • [91]
    Munson, G.P, Lam, D.L, Outten, F.W, O'Halloran, T.V (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182, 58645871.
  • [92]
    Silver, S (2003) Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27, 341354.
  • [93]
    Outten, F.W, Huffman, D.L, Hale, J.A, O'Halloran, T.V (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276, 3067030677.
  • [94]
    Grass, G, Rensing, C (2001) Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183, 21452147.
  • [95]
    Grass, G, Rensing, C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902908.
  • [96]
    Huffman, D.L, Huyett, J, Outten, F.W, Doan, P.E, Finney, L.A, Hoffman, B.M, O'Halloran, T.V (2002) Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41, 1004610055.
  • [97]
    Franke, S., Grass, G., Rensing, C. and Nies, D.H. (2003) Molecular analysis of the copper-transporting CusCFBA efflux system from Escherichia coli. J. Bacteriol. (in press).
  • [98]
    Nikaido, H (1998) Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516523.
  • [99]
    Kohler, T, Pechere, J.C, Plesiat, P (1999) Bacterial antibiotic efflux systems of medical importance. Cell. Mol. Life Sci. 56, 771778.
  • [100]
    Ziha Zarifi, I, Llanes, C, Kohler, T, Pechere, J.C, Plesiat, P (1999) In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob. Agents Chemother. 43, 287291.
  • [101]
    Hassan, M.E.T, van der Lelie, D, Springael, D, Römling, U, Ahmed, N, Mergeay, M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238, 417425.
  • [102]
    Srikumar, R, Kon, T, Gotoh, N, Poole, K (1998) Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob. Agents. Chemother. 42, 6571.
  • [103]
    Li, X.Z, Poole, K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can. J. Microbiol. 45, 1822.
  • [104]
    Li, X.Z, Zhang, L, Poole, K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol. 180, 29872991.
  • [105]
    Gotoh, N, Tsujimoto, H, Poole, K, Yamagishi, J.I, Nishino, T (1995) The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrob. Agents. Chemother. 39, 25672569.
  • [106]
    Maseda, H, Yoneyama, H, Nakae, T (2000) Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 658664.
  • [107]
    Chuanchuen, R, Narasaki, C.T, Schweizer, H.P (2002) The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J. Bacteriol. 184, 50365044.
  • [108]
    Aendekerk, S, Ghysels, B, Cornelis, C, Baysse, C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148, 23712381.
  • [109]
    Morita, Y, Komori, Y, Mima, T, Kuroda, T, Mizushima, T, Tsuchiya, T (2001) Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol. Lett. 202, 139143.
  • [110]
    Nishino, K, Yamaguchi, A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183, 58035812.
  • [111]
    Sulavik, M.C, Houseweart, C, Cramer, C, Jiwani, N, Murgolo, N, Greene, J, DiDomenico, B, Shaw, K.J, Miller, G.H, Hare, R, Shimer, G (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 11261136.
  • [112]
    White, D.G, Goldman, J.D, Demple, B, Levy, S.B (1997) Role of the acrAB locus inorganic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 1997, 61226126.
  • [113]
    Thanassi, D.G, Cheng, L.W, Nikaido, H (1997) Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179, 25122518.
  • [114]
    Aono, R (1998) Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles 2, 239248.
  • [115]
    Aono, R, Tsukagoshi, N, Yamamoto, M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J. Bacteriol. 180, 938944.
  • [116]
    Rand, J.D, Danby, S.G, Greenway, D.L.A, England, R.R (2002) Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. FEMS Microbiol. Lett. 207, 9195.
  • [117]
    Rosenberg, E.Y, Ma, D, Nikaido, H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 182, 17541756.
  • [118]
    Sánchez, L, Pan, W, Viñas, M, Nikaido, H (1998) The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J. Bacteriol. 179, 68556857.
  • [119]
    Hagman, K.E, Lucas, C.E, Balthazar, J.T, Snyder, L, Nilles, M, Judd, R.C, Shafer, W.M (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 7, 21172125.
  • [120]
    Veal, W.L, Nicholas, R.A, Shafer, W.M (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol. 184, 56195624.
  • [121]
    Ramos, J.L, Duque, E, Godoy, P, Segura, A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180, 33233329.
  • [122]
    Mosqueda, G, Ramos, J.L (2000) A set of genes encoding a second toluene efflux system in Pseudomonas. J. Bacteriol. 182, 937943.
  • [123]
    Lin, J, Michel, L.O, Zhang, Q.J (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46, 21242131.
  • [124]
    Pumbwe, L, Piddock, L.J.V (2002) Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett. 206, 185189.
  • [125]
    Magnet, S, Courvalin, P, Lambert, T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45, 33753380.
  • [126]
    Alonso, A, Martinez, J.L (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 44, 30793086.
  • [127]
    Palumbo, J.D, Kado, C.I, Phillips, D.A (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J. Bacteriol. 180, 31073113.
  • [128]
    Peng, W.T, Nester, E.W (2001) Characterization of a putative RND-type efflux system in Agrobacterium tumefaciens. Gene 270, 245252.
  • [129]
    Braibant, M, Guilloteau, L, Zygmunt, M.S (2002) Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob. Agents Chemother. 46, 30503053.
  • [130]
    Ikeda, T, Yoshimura, F (2002) A resistance-nodulation-cell division family xenobiotic efflux pump in an obligate anaerobe, Porphyromonas gingivalis. Antimicrob. Agents Chemother. 46, 32573260.
  • [131]
    Kumar, A, Worobec, E.A (2002) Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump. J. Antimicrob. Chemother. 50, 593596.
  • [132]
    Nikaido, H, Basina, M, Nguyen, V, Rosenberg, E.Y (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 46824692.
  • [133]
    Gotoh, N, Tsujimoto, H, Tsuda, M, Okamoto, K, Nomura, A, Wada, T, Nakahashi, M, Nishino, T (1998) Characterization of the MexC-MexD-OprJ multidrug efflux system in delta mexA-mexB-oprM mutants of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42, 19381943.
  • [134]
    Lomovskaya, O, Lee, A, Hoshino, K, Ishida, H, Mistry, A, Warren, M.S, Boyer, E, Chamberland, S, Lee, V.J (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43, 13401346.
  • [135]
    Li, X.Z, Zhang, L, Srikumar, R, Poole, K (1998) beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42, 399403.
  • [136]
    Oethinger, M, Kern, W.V, Jellen-Ritter, A.S, McMurry, L.M, Levy, S.B (2000) Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 44, 1013.
  • [137]
    Potrykus, J, Baranska, S, Wegrzyn, G (2002) Inactivation of the acrA gene is partially responsible for chloramphenicol sensitivity of Escherichia coli CM2555 strain expressing the chloramphenicol acetyltransferase gene. Microb. Drug Resist.-Mech. Epidemiol. Dis. 8, 179185.
  • [138]
    Ramos, J.L, Duque, E, Gallegos, M.T, Godoy, P, Ramos-Gonzalez, M.I, Rojas, A, Teran, W, Segura, A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743768.
  • [139]
    Kawamura-Sato, K, Shibayama, K, Horii, T, Iimuma, Y, Arakawa, Y, Ohta, M (1999) Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol. Lett. 179, 345352.
  • [140]
    Evans, K, Poole, K (1999) The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiol. Lett. 173, 3539.
  • [141]
    Pearson, J.P, Van Delden, C, Iglewski, B.H (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 12031210.
  • [142]
    Guan, L, Ehrmann, M, Yoneyama, H, Nakae, T (1999) Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA, B-OprM extrusion pump in Pseudomonas aeruginosa. J. Biol. Chem. 274, 1051710522.
  • [143]
    Gotoh, N, Kusumi, T, Tsujimoto, H, Wada, T, Nishino, T (1999) Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. FEBS Lett. 458, 3236.
  • [144]
    Saier, M.H.J (1994) Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol. Rev. 58, 7193.
  • [145]
    Gupta, A, Matsui, K, Lo, J.F, Silver, S (1999) Molecular basis for resistance to silver in Salmonella. Nat. Med. 5, 183188.
  • [146]
    Aires, J.R, Pechere, J.C, Van Delden, C, Kohler, T (2002) Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 46, 21692173.
  • [147]
    Kaback, H.R (1988) Site-directed mutagenesis and ion-gradient driven active transport: on the path of the proton. Annu. Rev. Physiol. 50, 243256.
  • [148]
    Kaback, H.R, Voss, J, Wu, J (1997) Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. Curr. Opin. Struct. Biol. 7, 537542.
  • [149]
    Varela, M.F, Wilson, T.H (1996) Molecular biology of the lactose carrier of Escherichia coli. Biochim. Biophys. Acta 276, 2134.
  • [150]
    Richter, H.-T, Brown, L.S, Needleman, R, Lanyi, J.K (1996) A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry 35, 40544062.
  • [151]
    Murakami, S, Nakashima, R, Yamashita, R, Yamaguchi, A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587593.
  • [152]
    Pos, K.M, Diederichs, K (2002) Purification, crystallization and preliminary diffraction studies of AcrB, the inner-membrane multi-drug efflux protein. Acta Crystallogr. D 58, 18651867.
  • [153]
    Pribyl, T. (2001) Topologie des CzcCBA-Efflux-Komplexes aus Ralstonia metallidurans CH34. Thesis, Martin-Luther-Universität, Halle-Wittenberg.
  • [154]
    Lacroix, F.J.C, Cloeckaert, A, Grepinet, O, Pinault, C, Popoff, M.Y, Waxin, H (1996) Salmonella typhimurium AcrB-like gene – Identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol. Lett. 135, 161167.
  • [155]
    Ma, D, Cook, D.N, Alberti, M, Pon, N.G, Kikaido, H, Hearst, J.E (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 175, 62996313.
  • [156]
    Srikumar, R, Li, X.Z, Poole, K (1997) Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J. Bacteriol. 179, 78757881.
  • [157]
    Yoneyama, H, Ocaktan, A, Gotoh, N, Nishino, T, Nakae, T (1998) Subunit swapping in the Mex-extrusion pumps in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 244, 898902.
  • [158]
    Murata, T, Kuwagaki, M, Shin, T, Gotoh, N, Nishino, T (2002) The substrate specificity of tripartite efflux systems of Pseudomonas aeruginosa is determined by the RND component. Biochem. Biophys. Res. Commun. 299, 247251.
  • [159]
    Cavallo, J.D, Plesiat, P, Couetdic, G, Leblanc, F J. Antimicrob. Chemother. 50, 1997. 1039–1043
  • [160]
    Koronakis, V, Sharff, A, Koronakis, E, Luisi, B, Hughes, C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914919.
  • [161]
    Wong, K.K.Y, Hancock, R.E.W (2000) Insertion mutagenesis and membrane topology model of the Pseudomonas aeruginosa outer membrane protein OprM. J. Bacteriol. 182, 24022410.
  • [162]
    Andersen, C, Koronakis, E, Hughes, C, Koronakis, V (2002) An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol. Microbiol. 44, 11311139.
  • [163]
    Yoshihara, E, Maseda, H, Saito, K (2002) The outer membrane component of the multidrug efflux pump from Pseudomonas aeruginosa may be a gated channel. Eur. J. Biochem. 269, 47384745.
  • [164]
    Kawabe, T, Fujihira, E, Yamaguchi, A (2000) Molecular construction of a multidrug exporter system, AcrAB: Molecular interaction between AcrA and AcrB, and cleavage of the N-terminal signal sequence of AcrA. J. Biochem. 128, 195200.
  • [165]
    Avila-Sakar, A.J, Misaghi, S, Wilson-Kubalek, E.M, Downing, K.H, Zgurskaya, H, Nikaido, H, Nogales, E (2001) Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J. Struct. Biol. 136, 8188.
  • [166]
    Elkins, C.A, Nikaido, H (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J. Bacteriol. 184, 64906498.
  • [167]
    Tikhonova, E.B, Wang, Q.J, Zgurskaya, H.I (2002) Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J. Bacteriol. 184, 64996507.
  • [168]
    Mao, W.M, Warren, M.S, Black, D.S, Satou, T, Murata, T, Nishino, T, Gotoh, N, Lomovskaya, O (2002) On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol. Microbiol. 46, 889901.
  • [169]
    Maseda, H, Kitao, M, Eda, S, Yoshihara, E, Nakae, T (2002) A novel assembly process of the multicomponent xenobiotic efflux pump in Pseudomonas aeruginosa. Mol. Microbiol. 46, 677686.
  • [170]
    Peterson, J.D, Umayam, L.A, Dickinson, T, Hickey, E.K, White, O (2001) The comprehensive microbial resource. Nucleic Acids Res. 29, 123125.
  • [171]
    Rensing, C, Pribyl, T, Nies, D.H (1997) New functions for the three subunits of the CzcCBA cation-proton-antiporter. J. Bacteriol. 179, 68716879.
  • [172]
    Lopez-Maury, L, Garcia-Dominguez, M, Florencio, F.J, Reyes, J.C (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 43, 247256.
  • [173]
    Grass, G, Fan, B, Rosen, B.P, Lemke, K, Schlegel, H.G, Rensing, C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J. Bacteriol. 183, 28032807.
  • [174]
    Waidner, B, Melchers, K, Ivanov, I, Loferer, H, Bensch, K.W, Kist, M, Bereswill, S (2002) Identification by RNA profiling and mutational analysis of the novel copper resistance determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP1328) in Helicobacter pylori. J. Bacteriol. 184, 67006708.
  • [175]
    Paulsen, I.T M.H Saier Jr. (1997) A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156, 99103.
  • [176]
    Guffanti, A.A, Wei, Y, Rood, S.V, Krulwich, T.A (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45, 145153.
  • [177]
    Wang, W, Guffanti, A.A, Wei, Y, Ito, M, Krulwich, T.A (2000) Two types of Bacillus subtilis tetA(L) deletion strains reveal the physiological importance of TetA(L) in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J. Bacteriol. 182, 20882095.
  • [178]
    Bloss, T, Clemens, S, Nies, D.H (2002) Characterisation of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214, 783791.
  • [179]
    Anton, A, Große, C, Reißman, J, Pribyl, T, Nies, D.H (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J. Bacteriol. 181, 68766881.
  • [180]
    Sturr, M.G, Ablooglu, A.J, Krulwich, T.A (1997) A Bacillus subtilis locus encoding several gene products affecting transport of cation. Gene 188, 9194.
  • [181]
    Xiong, A.M, Jayaswal, R.K (1998) Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J. Bacteriol. 180, 40244029.
  • [182]
    Kuroda, M, Hayashi, H, Ohta, T (1999) Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol. Immunol. 43, 115125.
  • [183]
    Spada, S, Pembroke, J.T, Wall, J.G (2002) Isolation of a novel Thermus thermophilus metal efflux protein that improves Escherichia coli growth under stress conditions. Extremophiles 6, 301308.
  • [184]
    Grass, G, Fan, B, Rosen, B.P, Franke, S, Nies, D.H, Rensing, C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J. Bacteriol. 183, 46644667.
  • [185]
    Lee, S.M, Grass, G, Haney, C.J, Fan, B, Rosen, B.P, Anton, A, Nies, D.H, Rensing, C (2002) Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol. Lett. 215, 273278.
  • [186]
    Grünberg, K, Wawer, C, Tebo, B.M, Schüler, D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 45734582.
  • [187]
    Buseck, P.R, Dunin-Borkowski, R.E, Devouard, B, Frankel, R.B, McCartney, M.R, Midgley, P.A, Pósfai, M, Weyland, M (2001) Magnetite morphology and life on Mars. Proc. Natl. Acad. Sci. USA 98, 1349013495.
  • [188]
    Thomas-Keprta, K.L, Clemett, S.J, Bazylinski, D.A, Kirschvink, J.L, McKay, D.S, Wentworth, S.J, Vali, H J.E.K Gibson Jr. Romanek, C.S (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol. 68, 36633672.
  • [189]
    Luhmann, J.G. and Russell, C.T. (1997) Mars: magnetic field and magnetosphere. In: Encyclopedia of Planetary Sciences (Shirley, J.H. and Fainbridge, R.W., Eds.), pp. 454–456. Chapman and Hall, New York.
  • [190]
    Paulsen, I.T, Sliwinski, M.K, Nelissen, B, Goffeau, A, Saier, M.H (1998) Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430, 116125.
  • [191]
    Kamizomo, A, Nishizawa, M, Teranishi, A, Murata, K, Kimura, A (1989) Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 219, 161167.
  • [192]
    Conklin, D.S, McMaster, J.A, Culbertson, M.R, Kung, C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 36783688.
  • [193]
    Conklin, D.S, Culbertson, M.R, Kung, C (1994) Interactions between gene products involved in divalent cation transport in Sacchromyces cerevisiae. Mol. Gen. Genet. 244, 303311.
  • [194]
    MacDiarmid, C.W, Gaither, L.A, Eide, D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 19, 28452855.
  • [195]
    Miyabe, S, Izawa, S, Inoue, Y (2001) The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 282, 7983.
  • [196]
    MacDiarmid, C.W, Milanick, M.A, Eide, D.J (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem. 277, 3918739194.
  • [197]
    Miyabe, S, Izawa, S, Inoue, Y (2000) Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 276, 879884.
  • [198]
    MacDiarmid, C.W, Gardner, R.C (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J. Biol. Chem. 273, 17271732.
  • [199]
    Kobayashi, S, Miyabe, S, Izawa, S, Inoue, Y, Kimura, A (1996) Correlation of the Osr/Zrc1 gene product and the intracellular glutathione levels in Saccharomyces cerevisiae. Biotechnol. Appl. Biochem. 23, 36.
  • [200]
    Li, L, Kaplan, J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J. Biol. Chem. 276, 50365043.
  • [201]
    Li, L, Kaplan, J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J. Biol. Chem. 272, 2848528493.
  • [202]
    Clemens, S, Bloss, T, Vess, C, Neumann, D, Nies, D.H, Zur Nieden, U (2002) A transporter in the endoplasmic reticulum/nuclear envelope of Schizosaccharomyces pombe cells differentially affects transition metal tolerance. J. Biol. Chem. 277, 1821518221.
  • [203]
    Palmiter, R.D, Findley, S.D (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639649.
  • [204]
    Palmiter, R.D, Cole, T.B, Findley, S.D (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15, 17841791.
  • [205]
    Palmiter, R.D, Cole, T.B, Quaife, C.J, Findley, S.D (1996) ZnT3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 1493414939.
  • [206]
    Wenzel, H.J, Cole, T.B, Born, D.E, Schwartzkroin, P.A, Palmiter, R.D (1997) Ultrastructral localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc. Natl. Acad. Sci. USA 94, 1267612681.
  • [207]
    Saito, T, Takahashi, K, Nakagawa, N, Hosokawa, T, Kurasaki, M, Yamanoshita, O, Yamamoto, Y, Sasaki, H, Nagashima, K, Fujita, H (2000) Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of rat. Biochem. Biophys. Res. Commun. 279, 505511.
  • [208]
    Michalczyk, A.A, Allen, J, Blomeley, R.C, Ackland, M.L (2002) Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochem. J. 364, 105113.
  • [209]
    Kambe, T, Narita, H, Yamaguchi-Iwai, Y, Hirose, J, Amano, T, Sugiura, N, Sasaki, R, Mori, K, Iwanaga, T, Nagao, M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277, 1904919055.
  • [210]
    Inoue, K, Matsuda, K, Itoh, M, Kawaguchi, H, Tomoike, H, Aoyagi, T, Nagai, R, Hori, M, Nakamura, Y, Tanaka, T (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum. Mol. Genet. 11, 17751784.
  • [211]
    Murgia, C, Vespignani, I, Cerase, J, Nobili, F, Perozzi, G (1999) Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am. J. Physiol. Gastrointest. Liver Physiol. 277, G1231G1239.
  • [212]
    Cragg, R.A, Christie, G.R, Phillips, S.R, Russi, R.M, Kury, S, Mathers, J.C, Taylor, P.M, Ford, D (2002) A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J. Biol. Chem. 277, 2278922797.
  • [213]
    Huang, L.P, Kirschke, C.P, Gitschier, J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J. Biol. Chem. 277, 2638926395.
  • [214]
    van der Zaal, B.J, Neuteboom, L.W, Pinas, J.E, Chardonnens, A.N, Schat, H, Verkleij, J.A.C, Hooykaas, P.J.J (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119, 10471055.
  • [215]
    Mäser, P, Thomine, S, Schroeder, J.I, Ward, J.M, Hirschi, K, Sze, H, Talke, I.N, Amtmann, A, Maathuis, F.J.M, Sanders, D, Harper, J.F, Tchieu, J, Gribskov, M, Persans, M.W, Salt, D.E, Kim, S.A, Guerinot, M.L (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 16461667.
  • [216]
    Assuncao, A.G.L, Martins, P.D, De Folter, S, Vooijs, R, Schat, H, Aarts, M.G.M (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24, 217226.
  • [217]
    Persans, M.W, Nieman, K, Salt, D.E (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA 98, 999510000.
  • [218]
    Fagan, M.J M.H Saier Jr. (1994) P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J. Mol. Evol. 38, 5799.
  • [219]
    Snavely, M.D, Florer, J.B, Miller, C.G, Maguire, M.E (1989) Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by CorA, MgtA, and MgtB systems. J. Bacteriol. 171, 47614766.
  • [220]
    Fan, B, Rosen, B.P (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. 277, 4698746992.
  • [221]
    Mandal, A.K, Cheung, W.D, Arguello, J.M (2002) Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus. J. Biol. Chem. 277, 72017208.
  • [222]
    Tottey, S, Rich, P.R, Rondet, S.A.M, Robinson, N.J (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC 6803. J. Biol. Chem. 276, 1999920004.
  • [223]
    Banci, L, Bertini, L, Ciofi-Baffoni, S, D'Onofrio, M, Gonnelli, L, Marhuenda-Egea, F.C, Ruiz-Duenas, F.J (2002) Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J. Mol. Biol. 317, 415429.
  • [224]
    Hasman, H, Aarestrup, F.M (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46, 14101416.
  • [225]
    Bissig, K.D, Wunderli-Ye, H, Duda, P.W, Solioz, M (2001) Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem. J. 357, 217223.
  • [226]
    Bissig, K.D, Voegelin, T.C, Solioz, M (2001) Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase. FEBS Lett. 507, 367370.
  • [227]
    Wunderli-Ye, H, Solioz, M (2001) Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Biochem. Biophys. Res. Commun. 280, 713719.
  • [228]
    Vats, N, Lee, S.F (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147, 653662.
  • [229]
    Stentz, R, Loizel, C, Malleret, C, Zagorec, M (2000) Development of genetic tools for Lactobacillus sakei: Disruption of the beta-galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl. Environ. Microbiol. 66, 42724278.
  • [230]
    Reeve, W.G, Tiwari, R.P, Kale, N.B, Dilworth, M.J, Glenn, A.R (2002) ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol. Microbiol. 43, 981991.
  • [231]
    Adaikkalam, V, Swarup, S (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology (UK) 148, 28572867.
  • [232]
    Burlando, B, Evangelisti, V, Dondero, F, Pons, G, Camakaris, J, Viarengo, A (2002) Occurrence of Cu-ATPase in Dictyostelium: possible role in resistance to copper. Biochem. Biophys. Res. Commun. 291, 476483.
  • [233]
    LaGier, M.J, Zhu, G, Keithly, J.S (2001) Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum. Gene 266, 2534.
  • [234]
    Riggle, P.J, Kumamoto, C.A (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol. 182, 48994905.
  • [235]
    Axelsen, K.B, Palmgren, M.G (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696706.
  • [236]
    Hirayama, T, Kieber, J.J, Hirayama, N, Kogan, M, Guzman, P, Nourizadeh, S, Alonso, J.M, Dailey, W.P, Dancis, A, Ecker, J.R (1999) Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383393.
  • [237]
    Larin, D, Mekios, C, Das, K, Ross, B, Yang, A.S, Gilliam, T.C (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J. Biol. Chem. 274, 2849728504.
  • [238]
    Butler, P, McIntyre, N, Mistry, P.K (2001) Molecular diagnosis of Wilson disease. Mol. Genet. Metab. 72, 223230.
  • [239]
    Udo, E.E, Jacob, L.E, Mathew, B (2000) A cadmium resistance plasmid, pXU5, in Staphylococcus aureus, strain ATCC25923. FEMS Microbiol. Lett. 189, 7980.
  • [240]
    Solovieva, I.M, Entian, K.D (2002) Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd2+ ion resistance. FEMS Microbiol. Lett. 208, 105109.
  • [241]
    Bal, N, Mintz, E, Guillain, F, Catty, P (2001) A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase. FEBS Lett. 506, 249252.
  • [242]
    Lee, S.W, Glickmann, E, Cooksey, D.A (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67, 14371444.
  • [243]
    Alonso, A, Sanchez, P, Martinez, J.L (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother. 44, 17781782.
  • [244]
    Beard, S.J, Hashim, R, MembrilloHernandez, J, Hughes, M.N, Poole, R.K (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25, 883891.
  • [245]
    Rensing, C, Mitra, B, Rosen, B.P (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94, 1432614331.
  • [246]
    Rensing, C, Sun, Y, Mitra, B, Rosen, B.P (1998) Pb(II)-translocating P-type ATPases. J. Biol. Chem. 273, 3261432617.
  • [247]
    Sharma, R, Rensing, C, Rosen, B.P, Mitra, B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J. Biol. Chem. 275, 38733878.
  • [248]
    Mitra, B, Sharma, R (2001) The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40, 76947699.
  • [249]
    Shiraishi, E, Inouhe, M, Joho, M, Tohoyama, H (2000) The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr. Genet. 37, 7986.
  • [250]
    Tong, L, Nakashima, S, Shibasaka, M, Katsuhara, M, Kasamo, K (2002) A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. J. Bacteriol. 184, 50275035.
  • [251]
    Herrmann, L, Schwan, D, Garner, R, Mobley, H.L.T, Haas, R, Schäfer, K.P, Melchers, K (1999) Helicobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Mol. Microbiol. 33, 524536.
  • [252]
    Rutherford, J.C, Cavet, J.S, Robinson, N.J (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 2582725832.
  • [253]
    Amoroso, M.J, Schubert, D, Mitscherlich, P, Schumann, P, Kothe, E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J. Basic Microbiol. 40, 295301.
  • [254]
    Degen, O, Eitinger, T (2002) Substrate specificity of nickel/cobalt permeases: Insights from mutants altered in transmembrane domains I and II. J. Bacteriol. 184, 35693577.
  • [255]
    Eitinger, T, Friedrich, B (1994) A topological model for the high-affinity nickel transporter of Alcaligenes eutrophus. Mol. Microbiol. 12, 10251032.
  • [256]
    Eitinger, T, Wolfram, L, Degen, O, Anthon, C (1997) A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease. J. Biol. Chem. 272, 1713917144.
  • [257]
    Odermatt, A, Suter, H, Krapf, R, Solioz, M (1992) An ATPase operon involved in copper resistance by Enterococcus hirae. Ann. NY Acad. Sci. 671, 484486.
  • [258]
    Odermatt, A, Suter, H, Krapf, R, Solioz, M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 1277512779.
  • [259]
    Odermatt, A, Krapf, R, Solioz, M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem. Biophys. Res. Commun. 202, 4448.
  • [260]
    Odermatt, A, Solioz, M (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. 270, 43494354.
  • [261]
    Lu, Z.H, Dameron, C.T, Solioz, M (2003) The Enterococcus hirae paradigm of copper homeostasis: Copper chaperone turnover, interactions, and transactions. Biometals 16, 137143.
  • [262]
    Gaballa, A, Helmann, J.D (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol. Microbiol. 45, 9971005.
  • [263]
    Tsai, K.J, Lin, Y.F, Wong, M.D, Yang, H.H.C, Fu, H.L, Rosen, B.P (2002) Membrane topology of the pl258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bioenerg. Biomembr. 34, 147156.
  • [264]
    DiDonato, M, Zhang, J.Y, Que, L, Sarkar, B (2002) Zinc binding to the NH2-terminal domain of the Wilson disease copper-transporting ATPase – Implications for in vivo metal ion-mediated regulation of ATPase activity. J. Biol. Chem. 277, 1340913414.
  • [265]
    Borremans, B, Hobman, J.L, Provoost, A, Brown, N.L, van der Lelie, D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183, 56515658.
  • [266]
    Baker, A.J.M (1987) Metal tolerance in plants. New Phytol. 106, 93111.
  • [267]
    Nies, D.H, Koch, S, Wachi, S, Peitzsch, N, Saier, M.H.J (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate transporters. J. Bacteriol. 180, 57995802.
  • [268]
    Alvarez, A.H, Moreno-Sanchez, R, Cervantes, C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol. 181, 73987400.
  • [269]
    Pimentel, B.E, Moreno-Sanchez, R, Cervantes, C (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol. Lett. 212, 249254.
  • [270]
    Nies, A, Nies, D.H, Silver, S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265, 56485653.
  • [271]
    Nies, A, Nies, D.H, Silver, S (1989) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171, 50655070.
  • [272]
    Peitzsch, N, Eberz, G, Nies, D.H (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453458.
  • [273]
    Juhnke, S, Peitzsch, N, Hübener, N, Große, C, Nies, D.H (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch. Microbiol. 179, 1525.
  • [274]
    Cervantes, C, Ohtake, H, Chu, L, Misra, T.K, Silver, S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172, 287291.
  • [275]
    Nicholson, M.L, Laudenbach, D.E (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and cysR. J. Bacteriol. 177, 21432150.
  • [276]
    Lenz, O, Schwartz, E, Dernedde, J, Eitinger, T, Friedrich, B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J. Bacteriol. 176, 43854393.
  • [277]
    Mobley, H.L.T, Garner, R.M, Bauerfeind, P (1995) Helicobacter pylori nickel-transport gene NixA – Synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol. Microbiol. 16, 97109.
  • [278]
    Fulkerson, J.F, Garner, R.M, Mobley, H.L.T (1998) Conserved residues and motifs in the NixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. J. Biol. Chem. 273, 235241.
  • [279]
    Depina, K, Navarro, C, Mcwalter, L, Boxer, D.H, Price, N.C, Kelly, S.M (1995) Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli. Eur. J. Biochem. 227, 857865.
    Direct Link:
  • [280]
    Altschul, S.F, Madden, T.L, Schäffer, A.A, Zhang, J, Zhang, Z, Miller, W, Lipman, D.J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • [281]
    Altschul, K, Altschul, S, Altschul, S.F (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 22642268.
  • [282]
    Altschul, K, Altschul, S, Altschul, S.F (1993) Applications and statistics for multiple high-scoring segments in molecular sequences. Proc. Natl. Acad. Sci. USA 90, 58735877.
  • [283]
    Solioz, M, Stoyanov, J.V (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27, 183195.
  • [284]
    Cavet, J.S, Borrelly, G.P.M, Robinson, N.J (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol. Rev. 27, 165181.