• [1]
    Brown, N.L, Ford, S.J, Pridmore, R.D, Fritzinger, D.C (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22, 40894095.
  • [2]
    Brown, N.L, Pridmore, R.D, Fritzinger, D.C (1984) The mercury-resistance genes of transposon Tn501– nucleotide sequence of the mer operon and a possible mechanism for mercury detoxification. Biochem. Soc. Trans. 12, 276277.
  • [3]
    Brown, N.L, Misra, T.K, Winnie, J.N, Schmidt, A, Seiff, M, Silver, S (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501– further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202, 143151.
  • [4]
    Barrineau, P, Gilbert, P, Jackson, W.J, Jones, C.S, Summers, A.O, Wisdom, S (1984) The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J. Mol. Appl. Genet. 2, 601619.
  • [5]
    Barrineau, P, Gilbert, P, Jackson, W.J, Jones, C.S, Summers, A.O, Wisdom, S (1985) The structure of the mer operon. Basic Life Sci. 30, 707718.
  • [6]
    Lund, P.A, Ford, S.J, Brown, N.L (1986) Transcriptional regulation of the mercury resistance genes of transposon Tn501. J. Gen. Microbiol. 132, 465480.
  • [7]
    Lund, P.A, Brown, N.L (1989) Regulation of transcription in Escherichia coli from the mer and merR promoters in the transposon Tn501. J. Mol. Biol. 205, 343353.
  • [8]
    O'Halloran, T.V, Walsh, C.T. Positive and negative control of prokaryotic gene-expression by a metalloprotein – purification and characterization of the MerR regulatory protein. J. Cell Biochem. Suppl. 10D, 1986. 104
  • [9]
    Heltzel, A, Gambill, D, Jackson, W.J, Totis, P.A, Summers, A.O (1987) Overexpression and DNA-binding properties of the mer-encoded regulatory protein from plasmid NR1 (Tn21). J. Bacteriol. 169, 33793384.
  • [10]
    O'Halloran, T.V, Frantz, B, Shin, M.K, Ralston, D.M, Wright, J.G (1989) The MerR heavy-metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56, 119129.
  • [11]
    Lund, P, Brown, N (1989) Up-promoter mutations in the positively-regulated mer promoter of Tn501. Nucleic Acids Res. 17, 55175527.
  • [12]
    Holmes, D.J, Caso, J.L, Thompson, C.J (1993) Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans. EMBO J. 12, 31833191.
  • [13]
    Amabile-Cuevas, C.F, Demple, B (1991) Molecular characterization of the soxRS genes of Escherichia coli– 2 genes control a superoxide stress regulon. Nucleic Acids Res. 19, 44794484.
  • [14]
    Nunoshiba, T, Hidalgo, E, Cuevas, C.F.A, Demple, B (1992) 2-Stage control of an oxidative stress regulon – the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J. Bacteriol. 174, 60546060.
  • [15]
    Zeng, Q.D, Stalhandske, C, Anderson, M.C, Scott, R.A, Summers, A.O (1998) The core metal-recognition domain of MerR. Biochemistry 37, 1588515895.
  • [16]
    Caguiat, J.J, Watson, A.L, Summers, A.O (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181, 34623471.
  • [17]
    Ahmed, M, Lyass, L, Markham, P.N, Taylor, S.S, Vazquezlaslop, N, Neyfakh, A.A (1995) Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacteriol. 177, 39043910.
  • [18]
    Ahmed, M, Borsch, C.M, Taylor, S.S, Vazquezlaslop, N, Neyfakh, A.A (1994) A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J. Biol. Chem. 269, 2850628513.
  • [19]
    Heldwein, E.E.Z, Brennan, R.G (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409, 378382.
  • [20]
    Godsey, M.H, Baranova, N.N, Neyfakh, A.A, Brennan, R.G (2001) Crystal structure of MtaN, a global multidrug transporter gene activator. J. Biol. Chem. 276, 4717847184.
  • [21]
    Noll, M, Petrukhin, K, Lutsenko, S (1998) Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli. J. Biol. Chem. 273, 2139321401.
  • [22]
    Brocklehurst, K.R, Hobman, J.L, Lawley, B, Blank, L, Marshall, S.J, Brown, N.L, Morby, A.P (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31, 893902.
  • [23]
    Rutherford, J.C, Cavet, J.S, Robinson, N.J (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 2582725832.
  • [24]
    Outten, F.W, Outten, C.E, Hale, J, O'Halloran, T.V (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275, 3102431029.
  • [25]
    Borremans, B, Hobman, J.L, Provoost, A, Brown, N.L, van der Lelie, D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183, 56515658.
  • [26]
    Stoyanov, J.V, Hobman, J.L, Brown, N.L (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 39, 502511.
  • [27]
    Lee, S.W, Glickmann, E, Cooksey, D.A (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67, 14371444.
  • [28]
    Kim, J.S, Kim, M.H, Joe, M.H, Song, S.S, Lee, I.S, Choi, S.Y (2002) The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol. Lett. 210, 99103.
  • [29]
    Reeve, W.G, Tiwari, R.P, Kale, N.B, Dilworth, M.J, Glenn, A.R (2002) ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol. Microbiol. 43, 981991.
  • [30]
    Ross, W, Park, S.J, Summers, A.O (1989) Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J. Bacteriol. 171, 40094018.
  • [31]
    Shewchuk, L.M, Helmann, J.D, Ross, W, Park, S.J, Summers, A.O, Walsh, C.T (1989) Transcriptional switching by the MerR protein – activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Biochemistry 28, 23402344.
  • [32]
    Helmann, J.D, Ballard, B.T, Walsh, C.T (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247, 946948.
  • [33]
    Summers, A.O (1992) Untwist and shout – a heavy metal-responsive transcriptional regulator. J. Bacteriol. 174, 30973101.
  • [34]
    Lee, I.W, Livrelli, V, Park, S.J, Totis, P.A, Summers, A.O (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. 2. Repressor activator (MerR)-RNA polymerase interaction with merOP mutants. J. Biol. Chem. 268, 26322639.
  • [35]
    Livrelli, V, Lee, I.W, Summers, A.O (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. 1. Metalloregulatory protein MerR mutants. J. Biol. Chem. 268, 26232631.
  • [36]
    Markham, P.N, Ahmed, M, Neyfakh, A.A (1996) The drug-binding activity of the multidrug-responding transcriptional regulator BmrR resides in its C-terminal domain. J. Bacteriol. 178, 14731475.
  • [37]
    Baranova, N.N, Danchin, A, Neyfakh, A.A (1999) Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Mol. Microbiol. 31, 15491559.
  • [38]
    Stanisich, V.A, Bennett, P.M, Richmond, M.H (1977) Characterisation of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bacteriol. 129, 12271233.
  • [39]
    Foster, T.J, Ginnity, F (1985) Some mercurial resistance plasmids from different incompatibility groups specify merR regulatory functions that both repress and induce the mer operon of plasmid-R100. J. Bacteriol. 162, 773776.
  • [40]
    Hobman, J.L. and Brown, N.L. (1997) Bacterial mercury resistance genes. In: Metal Ions in Biological Systems, Vol. 34, pp. 527–568. Marcel Dekker Inc.
  • [41]
    Sedlmeier, R, Altenbuchner, J (1992) Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. Mol. Gen. Genet. 236, 7685.
  • [42]
    Busenlehner, L.S, Pennella, M.A, Giedroc, D.P (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27, 131143.
  • [43]
    Liebert, C.A, Watson, A.L, Summers, A.O (2000) The quality of merC, a module of the mer mosaic. J. Mol. Evol. 51, 607622.
  • [44]
    Hobman, J, Kholodii, G, Nikiforov, V, Ritchie, D.A, Strike, P, Yurieva, O (1994) The sequence of the mer operon of Pmer327/419 and transposon ends of Pmer327/419, Pmer330 and Pmer05. Gene 146, 7378.
  • [45]
    Mindlin, S, Kholodii, G, Gorlenko, Z, Minakhina, S, Minakhin, L, Kalyaeva, E, Kopteva, A, Petrova, M, Yurieva, O, Nikiforov, V (2001) Mercury resistance transposons of Gram-negative environmental bacteria and their classification. Res. Microbiol. 152, 811822.
  • [46]
    Mukhopadhyay, D, Yu, H.R, Nucifora, G, Misra, T.K (1991) Purification and functional characterization of MerD – a coregulator of the mercury resistance operon in Gram-negative bacteria. J. Biol. Chem. 266, 1853818542.
  • [47]
    Liebert, C.A, Hall, R.M, Summers, A.O (1999) Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507522.
  • [48]
    Barkay, T, Miller, S.M, Summers, A.O (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27, 355384.
  • [49]
    Parkhill, J, Brown, N.L (1990) Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501– the 19 base-pair spacer is essential for normal induction of the promoter by merR. Nucleic Acids Res. 18, 51575162.
  • [50]
    Park, S.J, Wireman, J, Summers, A.O (1992) Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol. 174, 21602171.
  • [51]
    Shewchuk, L.M, Verdine, G.L, Nash, H, Walsh, C.T (1989) Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry 28, 61406145.
  • [52]
    Wright, J.G, Natan, M.J, Macdonnell, F.M, Ralston, D.M, O'Halloran, T.V (1990) Mercury(II) thiolate chemistry and the mechanism of the heavy-metal biosensor MerR. Prog. Inorg. Chem. 38, 323412.
  • [53]
    Wright, J.G, Tsang, H.T, Penner-Hahn, J.E, O'Halloran, T.V (1990) Coordination chemistry of the Hg-MerR metalloregulatory protein – evidence for a novel tridentate Hg-cysteine receptor-site. J. Am. Chem. Soc. 112, 24342435.
  • [54]
    Watton, S.P, Wright, J.G, Macdonnell, F.M, Bryson, J.W, Sabat, M, O'Halloran, T.V (1990) Trigonal mercuric complex of an aliphatic thiolate – a spectroscopic and structural model for the receptor-site in the Hg(II) biosensor MerR. J. Am. Chem. Soc. 112, 28242826.
  • [55]
    Nucifora, G, Chu, L, Silver, S, Misra, T.K (1989) Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol. 171, 42414247.
  • [56]
    O'Halloran, T, Walsh, C (1987) Metalloregulatory DNA-binding protein encoded by the merR gene – isolation and characterization. Science 235, 211214.
  • [57]
    Ishihama, A (1993) Protein–protein communication within the transcription apparatus. J. Bacteriol. 175, 24832489.
  • [58]
    Caslake, L.F, Ashraf, S.I, Summers, A.O (1997) Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon. J. Bacteriol. 179, 17871795.
  • [59]
    Kulkarni, R.D, Summers, A.O (1999) MerR cross-links to the α, β and σ70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 38, 33623368.
  • [60]
    Parkhill, J, Lawley, B, Hobman, J.L, Brown, N.L (1998) Selection and characterization of mercury-independent activation mutants of the Tn501 transcriptional regulator, MerR. Microbiology 144, 28552864.
  • [61]
    Parkhill, J, Ansari, A.Z, Wright, J.G, Brown, N.L, O'Halloran, T.V (1993) Construction and characterization of a mercury-independent MerR activator (MerRAC) – transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO J. 12, 413421.
  • [62]
    Huffman, D.L., Utschig, L.M. and O'Halloran, T.V. (1997) Mercury-responsive gene regulation and mercury-199 as a probe of protein structure. In: Metal Ions in Biological Systems, Vol. 34, pp. 503–526. Marcel Dekker Inc.
  • [63]
    Utschig, L.M, Bryson, J.W, O'Halloran, T.V (1995) Hg-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268, 380385.
  • [64]
    Dieckmann, G.R, McRorie, D.K, Tierney, D.L, Utschig, L.M, Singer, C.P, O'Halloran, T.V, Penner-Hahn, J.E, DeGrado, W.F, Pecoraro, V.L (1997) De novo design of mercury-binding two- and three-helical bundles. J. Am. Chem. Soc. 119, 61956196.
  • [65]
    Dieckmann, G.R, McRorie, D.K, Lear, J.D, Sharp, K.A, DeGrado, W.F, Pecoraro, V.L (1998) The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. J. Mol. Biol. 280, 897912.
  • [66]
    Ralston, D.M, O'Halloran, T.V (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87, 38463850.
  • [67]
    Condee, C.W, Summers, A.O (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene-expression kinetics and promoter response to altered superhelicity. J. Bacteriol. 174, 80948101.
  • [68]
    Rouch, D.A, Parkhill, J, Brown, N.L (1995) Induction of bacterial mercury- and copper-responsive promoters: functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. J. Indust. Microbiol. 14, 249253.
  • [69]
    Ansari, A.Z, Bradner, J.E, O'Halloran, T.V (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371375.
  • [70]
    Ansari, A.Z, Chael, M.L, O'Halloran, T.V (1992) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 8789.
  • [71]
    Goldbeter, A, Koshland, D.E (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 68406844.
  • [72]
    Koshland, D.E (1987) Switches, thresholds and ultrasensitivity. Trends Biochem. Sci. 12, 225229.
  • [73]
    Goldbeter, A, Koshland, D.E (1984) Ultrasensitivity in biochemical systems controlled by covalent modification – interplay between zero-order and multistep effects. J. Biol. Chem. 259, 14411447.
  • [74]
    Comess, K.M, Shewchuk, L.M, Ivanetich, K, Walsh, C.T (1994) Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins on transcriptional regulation. Biochemistry 33, 41754186.
  • [75]
    Hidalgo, E, Demple, B (1997) Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor. EMBO J. 16, 10561065.
  • [76]
    Hidalgo, E, Leautaud, V, Demple, B (1998) The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO J. 17, 26292636.
  • [77]
    Chiu, M.L, Viollier, P.H, Katoh, T, Ramsden, J.J, Thompson, C.J (2001) Ligand-induced changes in the Streptomyces lividans TipAL protein imply an alternative mechanism of transcriptional activation for MerR-like proteins. Biochemistry 40, 1295012958.
  • [78]
    Chiu, M.L, Folcher, M, Katoh, T, Puglia, A.M, Vohradsky, J, Yun, B.S, Seto, H, Thompson, C.J (1999) Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J. Biol. Chem. 274, 2057820586.
  • [79]
    Chen, K, Outten, C.E, O'Halloran, T.V (2001) DNA distortion mechanism for transcriptional activation by a copper-responsive gene-regulatory protein CueR in E. coli. J. Inorg. Biochem. 86, 179179.
  • [80]
    Outten, C.E, Outten, F.W, O'Halloran, T.V (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem. 274, 3751737524.
  • [81]
    Khan, S, Brocklehurst, K.R, Jones, G.W, Morby, A.P (2002) The functional analysis of directed amino acid alterations in ZntR from Escherichia coli. Biochem. Biophys. Res. Commun. 299, 438455.
  • [82]
    Lee, I.W, Gambill, B.D, Summers, A.O (1989) Translation of MerD in Tn21. J. Bacteriol. 171, 22222225.
  • [83]
    Nucifora, G, Silver, S, Misra, T.K (1989) Down regulation of the mercury resistance operon by the merD gene. Mol. Gen. Genet. 220, 6972.
  • [84]
    Demple, B (1996) Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon – A review. Gene 179, 5357.
  • [85]
    Pomposiello, P.J, Demple, B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19, 109114.
  • [86]
    Hidalgo, E, Bollinger, J.M, Bradley, T.M, Walsh, C.T, Demple, B (1995) Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J. Biol. Chem. 270, 2090820914.
  • [87]
    Hidalgo, E, Demple, B. The iron-sulfur clusters present in SoxR regulate its activity as a transcriptional factor. J. Cell Biochem. Suppl. 21A, 1995. 245
  • [88]
    Bradley, T.M, Hidalgo, E, Leautaud, V, Ding, H, Demple, B (1997) Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation. Nucleic Acids Res. 25, 14691475.
  • [89]
    Chiu, M.L, Folcher, M, Griffin, P, Holt, T, Klatt, T, Thompson, C.J (1996) Characterization of the covalent binding of thiostrepton to a thiostrepton-induced protein from Streptomyces lividans. Biochemistry 35, 23322341.
  • [90]
    Markham, P.N, LoGuidice, J, Neyfakh, A.A (1997) Broad ligand specificity of the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. Biochem. Biophys. Res. Commun. 239, 269272.
  • [91]
    Christie, G.E, White, T.J, Goodwin, T.S (1994) A MerR homolog at 74 minutes on the Escherichia coli genome. Gene 146, 131132.
  • [92]
    Brown, P.K, Dozois, C.M, Nickerson, C.A, Zuppardo, A, Terlonge, J, Curtiss, R (2001) MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol. Microbiol. 41, 349363.
  • [93]
    Helmann, J.D, Wang, Y, Mahler, I, Walsh, C.T (1989) Homologous metalloregulatory proteins from both Gram-positive and Gram-negative bacteria control transcription of mercury resistance operons. J. Bacteriol. 171, 222229.
  • [94]
    Stoyanov, J.V, Brown, N.L (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J. Biol. Chem. 278, 14071410.
  • [95]
    Beard, S.J, Hashim, R, MembrilloHernandez, J, Hughes, M.N, Poole, R.K (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25, 883891.
  • [96]
    Binet, M.R.B, Poole, R.K (2000) Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett. 473, 6770.
  • [97]
    Hitomi, Y, Outten, C.E, O'Halloran, T.V (2001) Extreme zinc-binding thermodynamics of the metal sensor/regulator protein, ZntR. J. Am. Chem. Soc. 123, 86148615.
  • [98]
    Leonhartsberger, S, Huber, A, Lottspeich, F, Bock, A (2001) The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93105.
  • [99]
    Petersen, C, Moller, L.B (2000) Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261, 289298.
  • [100]
    Grass, G, Rensing, C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902908.
  • [101]
    Adaikkalam, V, Swarup, S (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148, 28572867.
  • [102]
    Odermatt, A, Solioz, M (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper ATPases of Enterococcus hirae. J. Biol. Chem. 270, 43494354.
  • [103]
    Solioz, M, Stoyanov, J.V (2003) Copper homeostasis in Enteroccocus hirae. FEMS Microbiol. Rev. 27, 183195.
  • [104]
    Solioz, M, Vulpe, C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21, 237241.
  • [105]
    Mergeay, M, Monchy, S, Vallaeys, T, Auquier, V, Benotmane, A, Bertin, P, Taghavi, S, Dunn, J, van der Lelie, D, Wattiez, R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a tentative catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27, 385410.
  • [106]
    Corbisier, P, van der Lelie, D, Borremans, B, Provoost, A, De Lorenzo, V, Brown, N.L, Lloyd, J.R, Hobman, J.L, Csoregi, E, Johansson, G, Mattiasson, B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 387, 235244.
  • [107]
    Garcia-Dominguez, M, Lopez-Maury, L, Florencio, F.J, Reyes, J.C (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp strain PCC 6803. J. Bacteriol. 182, 15071514.
  • [108]
    Outten, C.E, O'Halloran, T.V (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 24882492.
  • [109]
    Laddaga, R.A, Chu, L, Misra, T.K, Silver, S (1987) Nucleotide sequence and expression of the mercurial resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 84, 51065110.
  • [110]
    Kidd, S.P, Brown, N.L (2003) ZccR – a MerR-like regulator from Bordetella pertussis which responds to zinc, cadmium and cobalt. Biochem. Biophys. Res. Commun. 302, 697702.
  • [111]
    Rosinski, J.A, Atchley, W.R (1999) Molecular evolution of helix-turn-helix proteins. J. Mol. Evol. 49, 301309.
  • [112]
    Loh, J, Stacey, M.G, Sadowsky, M.J, Stacey, G (1999) The Bradyrhizobium japonicum nolA gene encodes three functionally distinct proteins. J. Bacteriol. 181, 15441554.
  • [113]
    Loh, J, Stacey, G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl. Environ. Microbiol. 69, 1017.
  • [114]
    Cervantes, M, Murillo, F.J (2002) Role for vitamin B-12 in light induction of gene expression in the bacterium Myxococcus xanthus. J. Bacteriol. 184, 22152224.
  • [115]
    Merrick, M.J (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor A3. J. Gen. Microbiol. 96, 299315.
  • [116]
    Hunt, A.C. (2003) The bldC developmental locus of Streptomyces coelicolor. PhD Thesis. The University of East Anglia, Norwich.
  • [117]
    Fuentes, A.M, Diaz-Mejia, J.J, Maldonado-Rodriguez, R, Amabile-Cuevas, C.F (2001) Differential activities of the SoxR protein of Escherichia coli: SoxS is not required for gene activation under iron deprivation. FEMS Microbiol. Lett. 201, 271275.
  • [118]
    Sadowsky, M.J, Cregan, P.B, Gottfert, M, Sharma, A, Gerhold, D, Rodriguezquinones, F, Keyser, H.H, Hennecke, H, Stacey, G (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc. Natl. Acad. Sci. USA 88, 637641.
  • [119]
    Garcia, M, Dunlap, J, Loh, J, Stacey, G (1996) Phenotypic characterization and regulation of the nolA gene of Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 9, 625636.
  • [120]
    Misra, T.K, Brown, N.L, Fritzinger, D.C, Pridmore, R.D, Barnes, W.M, Haberstroh, L, Silver, S (1984) Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA 81, 59755979.
  • [121]
    Hidalgo, E, Demple, B (1994) An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 13, 138146.