SEARCH

SEARCH BY CITATION

References

  • [1]
    Silver, S. (1996) Transport of inorganic cations. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), pp. 1091–1102. American Society for Microbiology, Washington, DC.
  • [2]
    Jakubovics, N.S, Jenkinson, H.F (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 17091718.
  • [3]
    Silver, S, Kralovic, M.L (1969) Manganese accumulation by Escherichia coli: evidence for a specific transport system. Biochem. Biophys. Res. Commun. 34, 640645.
  • [4]
    Silver, S, Johnseine, P, King, K (1970) Manganese active transport in Escherichia coli. J. Bacteriol. 104, 12991306.
  • [5]
    Debus, R.J (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1102, 269352.
  • [6]
    Ananyev, G.M, Zaltsman, L, Vasko, C, Dismukes, G.C (2001) The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. Biochim. Biophys. Acta 1503, 5268.
  • [7]
    Dau, H, Iuzzolino, L, Dittmer, J (2001) The tetra-manganese complex of photosystem II during its redox cycle – X-ray absorption results and mechanistic implications. Biochim. Biophys. Acta 1503, 2439.
  • [8]
    Robblee, J.H, Cinco, R.M, Yachandra, V.K (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1503, 723.
  • [9]
    Messinger, J (2000) Towards understanding the chemistry of photosynthetic oxygen evolution: dynamic structural changes, redox states and substrate water binding of the Mn cluster in photosystem II. Biochim. Biophys. Acta 1459, 481488.
  • [10]
    Fridovich, I (1998) Adverse effects of superoxide and defenses: studies with Escherichia coli. Drug Metab. Rev. 30, 277283.
  • [11]
    Culotta, V.C (2000) Superoxide dismutase, oxidative stress, and cell metabolism. Curr. Top. Cell Regul. 36, 117132.
  • [12]
    Whittaker, J.W (2000) Manganese superoxide dismutase. Met. Ions Biol. Syst. 37, 587611.
  • [13]
    Lynch, M, Kuramitsu, H (2000) Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect. 2, 12451255.
  • [14]
    Vidal, S.M, Pinner, E, Lepage, P, Gauthier, S, Gros, P (1996) Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J. Immunol. 157, 35593568.
  • [15]
    Makui, H, Roig, E, Cole, S.T, Helmann, J.D, Gros, P, Cellier, M.F (2000) Identification of the Escherichia coli K-12 NRAMP orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35, 10651078.
  • [16]
    Que, Q, Helmann, J.D (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol. Microbiol. 35, 14541468.
  • [17]
    Kehres, D.G, Zaharik, M.L, Finlay, B.B, Maguire, M.E (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol. Microbiol. 36, 10851100.
  • [18]
    Gunshin, H, Mackenzie, B, Berger, U.V, Gunshin, Y, Romero, M.F, Boron, W.F, Nussberger, S, Gollan, J.L, Hediger, M.A (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482488.
  • [19]
    Blackwell, J.M, Searle, S, Goswami, T, Miller, E.N (2000) Understanding the multiple functions of Nramp1. Microbes Infect. 2, 317321.
  • [20]
    Zwilling, B.S, Kuhn, D.E, Wikoff, L, Brown, D, LaFuse, W (1999) Role of iron in Nramp1-mediated inhibition of mycobacterial growth. Infect. Immun. 67, 13861392.
  • [21]
    Forbes, J.R, Gros, P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 9, 397403.
  • [22]
    Jabado, N, Jankowski, A, Dougaparsad, S, Picard, V, Grinstein, S, Gros, P (2000) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192, 12371248.
  • [23]
    Bearden, S.W, Perry, R.D (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32, 403414.
  • [24]
    Zhou, D, Hardt, W.D, Galan, J.E (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect. Immun. 67, 19741981.
  • [25]
    Janakiraman, A, Slauch, J.M (2000) The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35, 11461155.
  • [26]
    Kehres, D.G, Janakiraman, A, Slauch, J.M, Maguire, M.E (2002) SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 31593166.
  • [27]
    Van Veen, H.W, Abee, T, Kortstee, G.J.J, Konings, W.N, Zehnder, A.J.B (1994) Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 17661770.
  • [28]
    Beard, S.J, Hashim, R, Wu, G, Binet, M.R, Hughes, M.N, Poole, R.K (2000) Evidence for the transport of zinc(II) ions via the Pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231235.
  • [29]
    Van Veen, H.W, Abee, T, Kortstee, G.J, Pereira, H, Konings, W.N, Zehnder, A.J (1994) Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J. Biol. Chem. 269, 2950929514.
  • [30]
    Zvyagilskaya, R, Allard, P, Persson, B.L (2000) Two systems for phosphate uptake in Yarrowia lipolytica cells grown at acidic conditions. IUBMB Life 49, 143147.
  • [31]
    Kay, W.W, Ghei, O.K (1981) Inorganic cation transport and the effects on C4 dicarboxylate transport in Bacillus subtilis. Can. J. Microbiol. 27, 11941201.
  • [32]
    Winkelmann, G (2002) Microbial siderophore-mediated transport. Biochem. Soc. Trans. 30, 691696.
  • [33]
    Neilands, J.B (1995) Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 2672326726.
  • [34]
    Neilands, J.B (1993) Siderophores. Arch. Biochem. Biophys. 302, 13.
  • [35]
    M.H Saier Jr. (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354411.
  • [36]
    M.H Saier Jr. (1999) A functional-phylogenetic system for the classification of transport proteins. J. Cell Biochem. 32–33 (Suppl.), 8494.
  • [37]
    Agranoff, D.D, Monahan, I.M, Mangan, J.A, Butcher, P.D, Krishna, S (1999) Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J. Exp. Med. 190, 717724.
  • [38]
    Claverys, J.P (2001) A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152, 231243.
  • [39]
    Hao, Z, Chen, S, Wilson, D.B (1999) Cloning, expression and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl. Environ. Microbiol. 65, 47464752.
  • [40]
    Van Baelen, K, Vanoevelen, J, Missiaen, L, Raeymaekers, L, Wuytack, F (2001) The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J. Biol. Chem. 276, 1068310691.
  • [41]
    Cellier, M.F, Bergevin, I, Boyer, E, Richer, E (2001) Polyphyletic origins of bacterial Nramp transporters. Trends Genet. 17, 365370.
  • [42]
    Cellier, M, Prive, G, Belouchi, A, Kwan, T, Rodrigues, V, Chia, W, Gros, P (1995) Nramp defines a family of membrane proteins. Proc. Natl. Acad. Sci. USA 92, 1008910093.
  • [43]
    Liu, X.F, Culotta, V.C (1999) Mutational analysis of Saccharomyces cerevisiae SMF1P, a member of the Nramp family of metal transporters. J. Mol. Biol. 289, 885891.
  • [44]
    Bartsevich, V.V, Pakrasi, H.B (1996) Manganese transport in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 271, 2605726061.
  • [45]
    Steele-Mortimer, O, Méresse, S, Gorvel, J.-P, Toh, B.-H, Finlay, B.B (1999) Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 3350.
  • [46]
    Garcia-del Portillo, F, Finlay, B.B (1995) Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J. Cell Biol. 129, 8197.
  • [47]
    Fang, F, Vazquez-Torres, A (2002) Salmonella selectively stops traffic. Trends Microbiol. 10, 391392.
  • [48]
    Kehres, D.G, Janakiraman, A, Slauch, J.M, Maguire, M.E (2002) Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J. Bacteriol. 184, 31513158.
  • [49]
    Imlay, J.A (2002) How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 46, 111153.
  • [50]
    Posey, J.E, Hardham, J.M, Norris, S.J, Gherardini, F.C (1999) Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc. Natl. Acad. Sci. USA 96, 1088710892.
  • [51]
    Jakubovics, N.S, Smith, A.W, Jenkinson, H.F (2000) Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol. Microbiol. 38, 140153.
  • [52]
    Patzer, S.I, Hantke, K (2001) Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J. Bacteriol. 183, 48064813.
  • [53]
    Hantke, K (2001) Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172177.
  • [54]
    Ogawa, T, Bao, D.H, Katoh, H, Shibata, M, Pakrasi, H.B, Bhattacharyya-Pakrasi, M (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J. Biol. Chem. 277, 2898128986.
  • [55]
    Cowan, J.A. (1997) Fundamentals of inorganic biochemistry. In: Inorganic Biochemistry: An Introduction, pp. 1–63. Wiley-VCH, New York.
  • [56]
    Kozlov, Y.N, Kazakova, A.A, Klimov, V.V (1997) Changes in the redox potential and catalase activity of Mn2+ ions during formation of Mn-bicarbonate complexes. Membr. Cell Biol. 11, 115120.
  • [57]
    Stadtman, E.R, Berlett, B.S, Chock, P.B (1990) Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc. Natl. Acad. Sci. USA 87, 384388.
  • [58]
    Vance, C.K, Miller, A.-F (1998) A simple proposal that can explain the inactivity of metal-substituted superoxide dismutases. J. Am. Chem. Soc. 120, 461467.
  • [59]
    Fukuzumi, S, Itoh, S (2001) Catalytic control of redox reactivities of coenzyme analogs by metal ions. Antioxid. Redox Signal. 3, 807824.
  • [60]
    Vance, C.K, Miller, A.F (2001) Novel insights into the basis for Escherichia coli superoxide dismutase's metal ion specificity from Mn-substituted FeSOD and its very high Em. Biochemistry 40, 1307913087.
  • [61]
    Maguire, M.E, Cowan, J.A (2002) Mg2+ chemistry and biochemistry. Biometals 15, 203210.
  • [62]
    Kehres, D.G, Maguire, M.E (2002) Structure, properties and regulation of magnesium transport proteins. Biometals 15, 261270.
  • [63]
    Kehres, D.G, Lawyer, C.H, Maguire, M.E (1998) The CorA magnesium transporter gene family. Microb. Comp. Genomics 43, 151169.
  • [64]
    Eigen, M (1963) Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 6, 97115.
  • [65]
    Diebler, H, Eigen, M, Ilgenfritz, G, Maass, G, Winkler, R (1969) Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl. Chem. 20, 93115.
  • [66]
    Cowan, J.A (1991) Metallobiochemistry of magnesium, coordination complexes with biological substrates site specificity, kinetics and thermodynamics of binding, and implications for activity. Inorg. Chem. 30, 27402747.
  • [67]
    Cowan, J.A (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15, 225235.
  • [68]
    Kucharski, L.M, Lubbe, W.J, Maguire, M.E (2000) Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J. Biol. Chem. 275, 1676716773.
  • [69]
    Gerlach, D, Reichardt, W, Vettermann, S (1998) Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol. Lett. 160, 217224.
  • [70]
    Dougall, W.C, Nick, H.S (1991) Manganese superoxide dismutase: a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids. Endocrinology 129, 23762384.
  • [71]
    Hassan, H.M, Schrum, L.W (1994) Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli. FEMS Microbiol. Rev. 14, 315323.
  • [72]
    Hopkin, K.A, Papazian, M.A, Steinman, H.M (1992) Functional differences between manganese and iron superoxide dismutases in Escherichia coli K-12. J. Biol. Chem. 267, 2425324258.
  • [73]
    Fee, J.A (1991) Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol. Microbiol. 5, 25992610.
  • [74]
    Christianson, D.W (1997) Structural chemistry and biology of manganese metalloenzymes. Prog. Biophys. Mol. Biol. 67, 217252.
  • [75]
    Yocum, C.F, Pecoraro, V (1999) Recent advances in the understanding of the biological chemistry of manganese. Curr. Opin. Chem. Biol. 3, 182187.
  • [76]
    Law, N.A, Caudle, M.T, Pecoraro, V.L (1999) Manganese redox enzymes and model systems: Properties, structures and reactivity. Adv. Inorg. Chem. 46, 305440.
  • [77]
    Whittaker, J.W (2002) Prokaryotic manganese superoxide dismutases. Methods Enzymol. 349, 8090.
  • [78]
    Salin, M.L, Duke, M.V, Ma, D.P, Boyle, J.A (1991) Halobacterium halobium Mn-SOD gene: archaebacterial and eubacterial features. Free Radic. Res. Commun. 12–13 (Pt 1), 443449.
  • [79]
    Takao, M, Yasui, A, Oikawa, A (1991) Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J. Biol. Chem. 266, 1415114154.
  • [80]
    Igarashi, T, Kono, Y, Tanaka, K (1996) Molecular cloning of manganese catalase from Lactobacillus plantarum. J. Biol. Chem. 271, 2952129524.
  • [81]
    Barynin, V.V, Whittaker, M.M, Antonyuk, S.V, Lamzin, V.S, Harrison, P.M, Artymiuk, P.J, Whittaker, J.W (2001) Crystal structure of manganese catalase from Lactobacillus plantarum. Structure (Camb.) 9, 725738.
  • [82]
    Kagawa, M, Murakoshi, N, Nishikawa, Y, Matsumoto, G, Kurata, Y, Mizobata, T, Kawata, Y, Nagai, J (1999) Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium. Arch. Biochem. Biophys. 362, 346355.
  • [83]
    Amo, T, Atomi, H, Imanaka, T (2002) Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J. Bacteriol. 184, 33053312.
  • [84]
    Robbe-Saule, V, Coynault, C, Ibanez-Ruiz, M, Hermant, D, Norel, F (2001) Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σs). Mol. Microbiol. 39, 15331545.
  • [85]
    Reddy, C.A, D'Souza, T.M (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13, 137152.
  • [86]
    Gold, M.H, Youngs, H.L, Gelpke, M.D (2000) Manganese peroxidase. Met. Ions Biol. Syst. 37, 559586.
  • [87]
    Cai, D, Tien, M (1993) Lignin-degrading peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30, 7990.
  • [88]
    Sundaramoorthy, M, Kishi, K, Gold, M.H, Poulos, T.L (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J. Biol. Chem. 272, 1757417580.
  • [89]
    Sundaramoorthy, M, Kishi, K, Gold, M.H, Poulos, T.L (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J. Biol. Chem. 269, 3275932767.
  • [90]
    Breen, A, Singleton, F.L (1999) Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10, 252258.
  • [91]
    Zou, P, Schrempf, H (2000) The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur. J. Biochem. 267, 28402849.
  • [92]
    Zou, P, Borovok, I, Ortiz de Orue, L.D, Muller, D, Schrempf, H (1999) The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145, 549559.
  • [93]
    Doctrow, S.R, Huffman, K, Marcus, C.B, Tocco, G, Malfroy, E, Adinolfi, C.A, Kruk, H, Baker, K, Lazarowych, N, Mascarenhas, J, Malfroy, B (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J. Med. Chem. 45, 45494558.
  • [94]
    Baudry, M, Etienne, S, Bruce, A, Palucki, M, Jacobsen, E, Malfroy, B (1993) Salen-manganese complexes are superoxide dismutase-mimics. Biochem. Biophys. Res. Commun. 192, 964968.
  • [95]
    Sharpe, M.A, Ollosson, R, Stewart, V.C, Clark, J.B (2002) Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem. J. 366, 97107.
  • [96]
    Archibald, F.S, Fridovich, I (1982) The scavenging of superoxide radical by manganous complexes in vitro. Arch. Biochem. Biophys. 214, 452463.
  • [97]
    Yim, M.B, Berlett, B.S, Chock, P.B, Stadtman, E.R (1990) Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates. Proc. Natl. Acad. Sci. USA 87, 394398.
  • [98]
    Berlett, B.S, Chock, P.B, Yim, M.B, Stadtman, E.R (1990) Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide. Proc. Natl. Acad. Sci. USA 87, 389393.
  • [99]
    O'Halloran, T.V, Culotta, V.C (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 2505725060.
  • [100]
    Archibald, F.S (1986) Manganese: its acquisition by and function in the lactic acid bacteria. Crit. Rev. Microbiol. 13, 63109.
  • [101]
    Posey, J.E, Gherardini, F.C (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288, 16511653.
  • [102]
    Niven, D.F, Ekins, A, Al Samaurai, A.A (1999) Effects of iron and manganese availability on growth and production of superoxide dismutase by Streptococcus suis. Can. J. Microbiol. 45, 10271032.
  • [103]
    Horsburgh, M.J, Wharton, S.J, Cox, A.G, Ingham, E, Peacock, S, Foster, S.J (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol. Microbiol. 44, 12691286.
  • [104]
    Tseng, H.J, Srikhanta, Y, McEwan, A.G, Jennings, M.P (2001) Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol. Microbiol. 40, 11751186.
  • [105]
    Ratledge, C, Dover, L.G (2000) Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881941.
  • [106]
    Escolar, L, Perez-Martin, J, De, L.V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181, 62236229.
  • [107]
    Schrum, L.W, Hassan, H.M (1993) Transcriptional activation of Mn-superoxide dismutase gene (sodA) of Escherichia coli by MnCl2. Biochim. Biophys. Acta 1216, 186190.
  • [108]
    Compan, I, Touati, D (1993) Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J. Bacteriol. 175, 16871696.
  • [109]
    Hamed, M.Y (1993) Binding of the ferric uptake regulation repressor protein (Fur) to Mn(II), Fe(II), Co(II), and Cu(II) ions as co-repressors: electronic absorption, equilibrium, and 57Fe Mossbauer studies. J. Inorg. Biochem. 50, 193210.
  • [110]
    Nealson, K.H, Saffarini, D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48, 311343.
  • [111]
    Hall, H.K, Foster, J.W (1996) The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J. Bacteriol. 178, 56835691.
  • [112]
    Baichoo, N, Wang, T, Ye, R, Helmann, J.D (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45, 16131629.
  • [113]
    Dubrac, S, Touati, D (2002) Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148, 147156.
  • [114]
    Dubrac, S, Touati, D (2000) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J. Bacteriol. 182, 38023808.
  • [115]
    Delany, I, Spohn, G, Rappuoli, R, Scarlato, V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol. 42, 12971309.
  • [116]
    Masse, E, Gottesman, S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 46204625.
  • [117]
    Johnson, G.S, Adler, C.R, Collins, J.J, Court, D (1979) Role of the spoT gene product and manganese ion in the metabolism of guanosine 5′-diphosphate 3′-diphosphate in Escherichia coli. J. Biol. Chem. 254, 54835487.
  • [118]
    Heinemeyer, E.A, Richter, D (1978) Mechanism of the in vitro breakdown of guanosine 5′-diphosphate 3′-diphosphate in Escherichia coli. Proc. Natl. Acad. Sci. USA 75, 41804183.
  • [119]
    Torok, I, Kari, C (1980) Accumulation of ppGpp in a relA mutant of Escherichia coli during amino acid starvation. J. Biol. Chem. 255, 38383840.
  • [120]
    Murray, K.D, Bremer, H (1996) Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J. Mol. Biol. 259, 4157.
  • [121]
    Svitil, A.L, Cashel, M, Zyskind, J.W (1993) Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J. Biol. Chem. 268, 23072311.
  • [122]
    Gentry, D.R, Hernandez, V.J, Nguyen, L.H, Jensen, D.B, Cashel, M (1993) Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol. 175, 79827989.
  • [123]
    Bremer, H, Ehrenberg, M (1995) Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing. Biochim. Biophys. Acta 1262, 1536.
  • [124]
    Gentry, D.R, Cashel, M (1996) Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol. 19, 13731384.
  • [125]
    Crosse, A.M, Greenway, D.L, England, R.R (2000) Accumulation of ppGpp and ppGp in Staphylococcus aureus 8325-4 following nutrient starvation. Lett. Appl. Microbiol. 31, 332337.
  • [126]
    E.W Crawford Jr. Shimkets, L.J (2000) The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev. 14, 483492.
  • [127]
    Hammer, B.K, Swanson, M.S (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol. Microbiol. 33, 721731.
  • [128]
    Chatterji, D, Ojha, A.K (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr. Opin. Microbiol. 4, 160165.
  • [129]
    Reddy, S.K, Kamireddi, M, Dhanireddy, K, Young, L, Davis, A, Reddy, P.T (2001) Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. J. Biol. Chem. 276, 3514135149.
  • [130]
    Barford, D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem. Sci. 21, 407412.
  • [131]
    Shi, L, Carmichael, W.W, Kennelly, P.J (1999) Cyanobacterial PPP family protein phosphatases possess multifunctional capabilities and are resistant to microcystin-LR. J. Biol. Chem. 274, 1003910046.
  • [132]
    Goldberg, J, Huang, H.B, Kwon, Y.G, Greengard, P, Nairn, A.C, Kuriyan, J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376, 745753.
  • [133]
    Zhang, C.C, Friry, A, Peng, L (1998) Molecular and genetic analysis of two closely linked genes that encode, respectively, a protein phosphatase 1/2A/2B homolog and a protein kinase homolog in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 180, 26162622.
  • [134]
    Cohen, P.T.W (1997) Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends Biochem. Sci. 22, 245251.
  • [135]
    Shi, L, Kehres, D.G, Maguire, M.E (2001) The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. J. Bacteriol. 183, 70537057.
  • [136]
    Missiakas, D, Raina, S (1997) Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J. 16, 16701685.
  • [137]
    Rusnak, F, Yu, L, Todorovic, S, Mertz, P (1999) Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster. Biochemistry 38, 69436952.
  • [138]
    Shi, L, Potts, M, Kennelly, P.J (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229253.
  • [139]
    Pancetti, A, Galan, J.E (2001) Characterization of the mutS-proximal region of the Salmonella typhimurium SPI-1 identifies a group of pathogenicity island-associated genes. FEMS Microbiol. Lett. 197, 203208.
  • [140]
    Udo, H, Inouye, M, Inouye, S (1997) Biochemical characterization of Pkn2, a protein Ser/Thr kinase from Myxococcus xanthus, a Gram-negative developmental bacterium. FEBS Lett. 400, 188192.
  • [141]
    Peirs, P, De Wit, L, Braibant, M, Huygen, K, Content, J (1997) A serine/threonine protein kinase from Mycobacterium tuberculosis. Eur. J. Biochem. 244, 604612.
  • [142]
    Chaba, R, Raje, M, Chakraborti, P.K (2002) Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur. J. Biochem. 269, 10781085.
  • [143]
    Deme, E, Nolte, A, Jacquier, A (1999) Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron. Biochemistry 38, 31573167.
  • [144]
    Brannvall, M, Kirsebom, L.A (2001) Metal ion cooperativity in ribozyme cleavage of RNA. Proc. Natl. Acad. Sci. USA 98, 1294312947.
  • [145]
    Wrzesinski, J, Michalowski, D, Ciesiolka, J, Krzyzosiak, W.J (1995) Specific RNA cleavages induced by manganese ions. FEBS Lett. 374, 6268.
  • [146]
    Fishman, R, Ankilova, V, Moor, N, Safro, M (2001) Structure at 2.6 Å resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese. Acta Crystallogr. D Biol. Crystallogr. 57, 15341544.
  • [147]
    Brannvall, M, Mikkelsen, N.E, Kirsebom, L.A (2001) Monitoring the structure of Escherichia coli RNase P RNA in the presence of various divalent metal ions. Nucleic Acids Res. 29, 14261432.
  • [148]
    Michalowski, D, Wrzesinski, J, Krzyzosiak, W (1996) Cleavages induced by different metal ions in yeast tRNA(Phe) U59C60 mutants. Biochemistry 35, 1072710734.
  • [149]
    Shuman, S (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 66, 140.
  • [150]
    Romeo, T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 13211330.
  • [151]
    Argaman, L, Hershberg, R, Vogel, J, Bejerano, G, Wagner, E.G, Margalit, H, Altuvia, S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11, 941950.
  • [152]
    Rivas, E, Klein, R.J, Jones, T.A, Eddy, S.R (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr. Biol. 11, 13691373.
  • [153]
    Majdalani, N, Chen, S, Murrow, J, St John, K, Gottesman, S (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39, 13821394.
  • [154]
    Altuvia, S, Zhang, A, Argaman, L, Tiwari, A, Storz, G (1998) The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J. 17, 60696075.
  • [155]
    Reyero, C, Dorner, F (1975) Purification of arginases from human-leukemic lymphocytes and granulocytes: study of their physicochemical and kinetic properties. Eur. J. Biochem. 56, 137147.
  • [156]
    Ryan, J.L, Yohe, W.B, Morrison, D.C (1980) Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides. Am. J. Pathol. 99, 451461.
  • [157]
    Stemmler, T.L, Sossong, T.M.J, Goldstein, J.I, Ash, D.E, Elgren, T.E, Kurtz, D.M.J, Penner-Hahn, J.E (1997) EXAFS comparison of the dimanganese core structures of manganese catalase, arginase, and manganese-substituted ribonucleotide reductase and hemerythrin. Biochemistry 36, 98479858.
  • [158]
    Sastre, M, Galea, E, Feinstein, D, Reis, D.J, Regunathan, S (1998) Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem. J. 330, 14051409.
  • [159]
    Bewley, M.C, Jeffrey, P.D, Patchett, M.L, Kanyo, Z.F, Baker, E.N (1999) Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Struct. Fold. Des. 7, 435448.
  • [160]
    Shimotohno, K.W, Iida, J, Takizawa, N, Endo, T (1994) Purification and characterization of arginine amidinohydrolase from Bacillus brevis TT02-8. Biosci. Biotechnol. Biochem. 58, 10451049.
  • [161]
    Carvajal, N, Lopez, V, Salas, M, Uribe, E, Herrera, P, Cerpa, J (1999) Manganese is essential for catalytic activity of Escherichia coli agmatinase. Biochem. Biophys. Res. Commun. 258, 808811.
  • [162]
    Griepenburg, U, Blasczyk, K, Kappl, R, Huttermann, J, Auling, G (1998) A divalent metal site in the small subunit of the manganese-dependent ribonucleotide reductase of Corynebacterium ammoniagenes. Biochemistry 37, 79927996.
  • [163]
    Iordan, E.P, Briukhanov, A.L, Dupaevskii, I, Prianishnikova, N.I, Danilova, I.V (2000) Manganese-dependent ribonucleotide reductase from Propionibacterium freudenreichii subsp. Shermanii: partial purification, characteristics and role in DNA biosynthesis. Mikrobiologiia 69, 471477.
  • [164]
    Mohamed, S.F, Gvozdiak, O.R, Stallmann, D, Griepenburg, U, Follmann, H, Auling, G (1998) Ribonucleotide reductase in Bacillus subtilis– evidence for a Mn-dependent enzyme. BioFactors 7, 337344.
  • [165]
    Hogbom, M, Huque, Y, Sjoberg, B.M, Nordlund, P (2002) Crystal structure of the di-iron/radical protein of ribonucleotide reductase from Corynebacterium ammoniagenes. Biochemistry 41, 13811389.
  • [166]
    Huque, Y, Fieschi, F, Torrents, E, Gibert, I, Eliasson, R, Reichard, P, Sahlin, M, Sjoberg, B.M (2000) The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein. J. Biol. Chem. 275, 2536525371.
  • [167]
    Sze, I.S, McFarlan, S.C, Spormann, A, Hogenkamp, H.P, Follmann, H (1992) A possible new class of ribonucleotide reductase from Methanobacterium thermoautotrophicum. Biochem. Biophys. Res. Commun. 184, 11011107.
  • [168]
    Dillon, D.A, Wu, W.I, Riedel, B, Wissing, J.B, Dowhan, W, Carman, G.M (1996) The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J. Biol. Chem. 271, 3054830553.
  • [169]
    Okada, M, Matsuzaki, H, Shibuya, I, Matsumoto, K (1994) Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J. Bacteriol. 176, 74567461.
  • [170]
    Sueyoshi, N, Kita, K, Okino, N, Sakaguchi, K, Nakamura, T, Ito, M (2002) Molecular cloning and expression of Mn2+-dependent sphingomyelinase/hemolysin of an aquatic bacterium, Pseudomonas sp. strain TK4. J. Bacteriol. 184, 540546.
  • [171]
    Krafft, A.E, Winter, J, Bokkenheuser, V.D, Hylemon, P.B (1987) Cofactor requirements of steroid-17-20-desmolase and 20 α-hydroxysteroid dehydrogenase activities in cell extracts of Clostridium scindens. J. Steroid Biochem. 28, 4954.
  • [172]
    Cartee, R.T, Forsee, W.T, Schutzbach, J.S, Yother, J (2000) Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem. 275, 39073914.
  • [173]
    DeAngelis, P.L (1996) Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry 35, 97689771.
  • [174]
    Miller, C.G, Green, L (1983) Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. J. Bacteriol. 153, 350356.
  • [175]
    D'souza, V.M, Swierczek, S.I, Cosper, N.J, Meng, L, Ruebush, S, Copik, A.J, Scott, R.A, Holz, R.C (2002) Kinetic and structural characterization of manganese(II)-loaded methionyl aminopeptidases. Biochemistry 41, 1309613105.
  • [176]
    Jalving, R, Bron, P, Kester, H.C, Visser, J, Schaap, P.J (2002) Cloning of a prolidase gene from Aspergillus nidulans and characterisation of its product. Mol. Genet. Genomics 267, 218222.
  • [177]
    Kulkarni, G.V, Deobagkar, D.D (2002) A cytosolic form of aminopeptidase P from Drosophila melanogaster: molecular cloning and characterization. J. Biochem. (Tokyo) 131, 445452.
  • [178]
    Cottrell, G.S, Hooper, N.M, Turner, A.J (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese(II)-dependent enzyme. Biochemistry 39, 1512115128.
  • [179]
    Gu, Y.Q, Holzer, F.M, Walling, L.L (1999) Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur. J. Biochem. 263, 726735.
  • [180]
    Stirling, C.J, Colloms, S.D, Collins, J.F, Szatmari, G, Sherratt, D.J (1989) xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J. 8, 16231627.
  • [181]
    Woolwine, S.C, Sprinkle, A.B, Wozniak, D.J (2001) Loss of Pseudomonas aeruginosa PhpA aminopeptidase activity results in increased algD transcription. J. Bacteriol. 183, 46744679.
  • [182]
    Behari, J, Stagon, L, Calderwood, S.B (2001) pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae. J. Bacteriol. 183, 178188.
  • [183]
    Boldt, Y.R, Whiting, A.K, Wagner, M.L, Sadowsky, M.J, Que, L.J, Wackett, L.P (1997) Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2. Biochemistry 36, 21472153.
  • [184]
    Whiting, A.K, Boldt, Y.R, Hendrich, M.P, Wackett, L.P, Que, L.J (1996) Manganese(II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 35, 160170.
  • [185]
    Dismukes, G.C (1996) Manganese enzymes with binuclear active sites. Chem. Rev. 96, 29092926.
  • [186]
    Seemann, J.E, Schulz, G.E (1997) Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273, 256268.
  • [187]
    Boulter, J.R, Gielow, W.O (1973) Properties of D-arabinose isomerase purified from two strains of Escherichia coli. J. Bacteriol. 113, 687696.
  • [188]
    Rose, I.A, O'Connell, E.L, Mortlock, R.P (1969) Stereochemical evidence for a cis-enediol intermediate in Mn-dependent aldose isomerases. Biochim. Biophys. Acta 178, 376379.
  • [189]
    Thompson, J, Ruvinov, S.B, Freedberg, D.I, Hall, B.G (1999) Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J. Bacteriol. 181, 73397345.
  • [190]
    Iwamoto, R, Taniki, H, Koishi, J, Nakura, S. D-glucosaminate aldolase activity of D-glucosaminate dehydratase from Pseudomonas fluorescens and its requirement for Mn2+ ion. Biosci. Biotechnol. Biochem. 59, 1995. 408–411
  • [191]
    Fraser, H.I, Kvaratskhelia, M, White, M.F (1999) The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett. 455, 344348.
  • [192]
    Graham, D.E, Xu, H, White, R.H (2002) A divergent archaeal member of the alkaline phosphatase binuclear metalloenzyme superfamily has phosphoglycerate mutase activity. FEBS Lett. 517, 190194.
  • [193]
    Chander, M, Setlow, B, Setlow, P (1998) The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can. J. Microbiol. 44, 759767.
  • [194]
    Donahue, J.L, Bownas, J.L, Niehaus, W.G, Larson, T.J (2000) Purification and characterization of glpX-encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J. Bacteriol. 182, 56245627.
  • [195]
    Kodaki, T, Fujita, N, Kameshita, I, Izui, K, Katsuki, H (1984) Phosphoenolpyruvate carboxylase of Escherichia coli. Specificity of some compounds as activators at the site for fructose 1,6-bisphosphate, one of the allosteric effectors. J. Biochem. (Tokyo) 95, 637642.
  • [196]
    M.H Saier Jr. Ramseier, T.M (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178, 34113417.
  • [197]
    Ramseier, T.M (1996) Cra and the control of carbon flux via metabolic pathways. Res. Microbiol. 147, 489493.
  • [198]
    Johnson, K.A, Chen, L, Yang, H, Roberts, M.F, Stec, B (2001) Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry 40, 618630.
  • [199]
    Young, T.W, Kuhn, N.J, Wadeson, A, Ward, S, Burges, D, Cooke, G.D (1998) Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase. Microbiology 144, 25632571.
  • [200]
    Parfenyev, A.N, Salminen, A, Halonen, P, Hachimori, A, Baykov, A.A, Lahti, R (2001) Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J. Biol. Chem. 276, 2451124518.
  • [201]
    Bonet, M.L, Llorca, F.I, Cadenas, E (1992) Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations. Int. J. Biochem. 24, 839845.
  • [202]
    Oxenrider, K.A, Kennelly, P.J (1993) A protein-serine phosphatase from the halophilic archaeon Haloferax volcanii. Biochem. Biophys. Res. Commun. 194, 13301335.
  • [203]
    Hays, H, Berdis, A.J (2002) Manganese substantially alters the dynamics of translesion DNA synthesis. Biochemistry 41, 47714778.
  • [204]
    Chou, F.I, Tan, S.T (1990) Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging Deinococcal culture. J. Bacteriol. 172, 20292035.
  • [205]
    Romani, A.M, Maguire, M.E (2002) Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells. Biometals 15, 271283.
  • [206]
    Romani, A, Scarpa, A (2000) Regulation of cellular magnesium. Front. Biosci. 5, D720D734.
  • [207]
    Lin, E.C.C. (1996) Dissimilatory pathways for sugars, polyols and carboxylates. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), pp. 307–342. American Society for Microbiology, Washington, DC.
  • [208]
    Schagger, H, Pfeiffer, K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 17771783.
  • [209]
    Hoppert, M, Mayer, F (1999) Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem. Biophys. 31, 247284.
  • [210]
    Binstock, J.F, Pramanik, A, Schulz, H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc. Natl. Acad. Sci. USA 74, 492495.
  • [211]
    Srere, P.A., Sherry, A.D., Malloy, C.R. and Sumegi, B. (1997) Channeling and intermediary metabolism. In: Channelling and Intermediary Metabolism (Aguis, L. and Sherrat, H.S.A., Eds.), pp. 201–217. Portland Press Ltd., London.
  • [212]
    Ishikawa, M, Mikami, Y, Usukura, J, Iwasaki, H, Shinagawa, H, Morikawa, K (1997) Reconstitution, morphology and crystallization of a fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi. Biochem. J. 328, 815820.
  • [213]
    Misset, O, Bos, O.J, Opperdoes, F.R (1986) Glycolytic enzymes of Trypanosoma brucei. Simultaneous purification, intraglycosomal concentrations and physical properties. Eur. J. Biochem. 157, 441453.
  • [214]
    Mowbray, J, Moses, V (1976) The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity. Eur. J. Biochem. 66, 2536.
  • [215]
    Gorringe, D.M, Moses, V (1978) A multienzyme aggregate with glycolytic activity from Escherichia coli. Biochem. Soc. Trans. 6, 167169.
  • [216]
    Nazaryan, K.B, Climent, F, Simonian, S, Tompa, P, Batke, J (1992) Interaction of rabbit muscle enolase and 3-phosphoglycerate mutase studied by ELISA and by batch gel filtration. Arch. Biochem. Biophys. 296, 650653.
  • [217]
    Batke, J, Nazaryan, K.B, Karapetian, N.H (1988) Complex of brain D-phosphoglycerate mutase and gamma enolase and its reactivation by D-glycerate 2,3-bisphosphate. Arch. Biochem. Biophys. 264, 510518.
  • [218]
    Weiss, P.M, Boerner, R.J, Cleland, W.W (1989) Enzymatic synthesis and inhibitory characteristics of tartronate semialdehyde phosphate. Biochemistry 28, 16341641.
  • [219]
    Dukan, S, Nystrom, T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem. 274, 2602726032.
  • [220]
    Nystrom, T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch. Microbiol. 176, 159164.
  • [221]
    Nystrom, T, Larsson, C, Gustafsson, L (1996) Bacterial defense against aging: role of the Escherichia coli ArcA regulator in gene expression, readjusted energy flux and survival during stasis. EMBO J. 15, 32193228.
  • [222]
    Doctrow, S.R, Huffman, K, Marcus, C.B, Musleh, W, Bruce, A, Baudry, M, Malfroy, B (1997) Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 38, 247269.
  • [223]
    Grant, R.A, Filman, D.J, Finkel, S.E, Kolter, R, Hogle, J.M (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 5, 294303.
  • [224]
    Boyer, E, Bergevin, I, Malo, D, Gros, P, Cellier, M.F (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 70, 60326042.
  • [225]
    Zaharik, M.L, Gruenheid, S, Perrin, A.J, Finlay, B.B (2002) Delivery of dangerous goods: type III secretion in enteric pathogens. Int. J. Med. Microbiol. 291, 593603.
  • [226]
    Galán, J.E (2001) Salmonella interactions with host cells: Type III secretion at work. Annu. Rev. Cell Dev. Biol. 17, 5386.
  • [227]
    Finlay, B.B, Cossart, P (1997) Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718725.
  • [228]
    Vazquez-Torres, A, Xu, Y, Jones-Carson, J, Holden, D.W, Lucia, S.M, Dinauer, M.C, Mastroeni, P, Fang, F.C (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 16551658.
  • [229]
    Justin, A.M, Kader, J.C, Collin, S (2002) Phosphatidylinositol synthesis and exchange of the inositol head are catalysed by the single phosphatidylinositol synthase 1 from Arabidopsis. Eur. J. Biochem. 269, 23472352.
  • [230]
    McPhee, F, Lowe, G, Vaziri, C, Downes, C.P (1991) Phosphatidylinositol synthase and phosphatidylinositol/inositol exchange reactions in turkey erythrocyte membranes. Biochem. J. 275, 187192.
  • [231]
    Moore, J.P, Smith, G.A, Hesketh, T.R, Metcalfe, J.C (1983) The bivalent-cation dependence of phosphatidylinositol synthesis in a cell-free system from lymphocytes. Biochem. J. 212, 691697.
  • [232]
    Bleasdale, J.E, Wallis, P (1981) Phosphatidylinositol-inositol exchange in a rabbit lung. Biochim. Biophys. Acta 664, 428440.
  • [233]
    Biggs, T.E, Baker, S.T, Botham, M.S, Dhital, A, Barton, C.H, Perry, V.H (2001) Nramp1 modulates iron homoeostasis in vivo and in vitro: evidence for a role in cellular iron release involving de-acidification of intracellular vesicles. Eur. J. Immunol. 31, 20602070.
  • [234]
    Gruenheid, S, Pinner, E, Desjardins, M, Gros, P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J. Exp. Med. 185, 717730.
  • [235]
    Wang, X.M, Lin, F.R, Hsu, H.S, Mumaw, V.R, Nakoneczna, I (1988) Electron microscopic studies on the location of Salmonella proliferation in the murine spleen. J. Med. Microbiol. 25, 4147.
  • [236]
    Conlan, J.W (1997) Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect. Immun. 65, 630635.
  • [237]
    Dunlap, N.E W.H Benjamin Jr. Briles, D.E (1994) The intracellular nature of Salmonella infection during the early stages of mouse typhoid. Immunol. Ser. 60, 303312.
  • [238]
    Khan, S.A, Strijbos, P.J, Everest, P, Moss, D, Stratford, R, Mastroeni, P, Allen, J, Servos, S, Charles, I.G, Dougan, G, Maskell, D.J (2001) Early responses to Salmonella typhimurium infection in mice occur at focal lesions in infected organs. Microb. Pathog. 30, 2938.
  • [239]
    Prouty, A.M, Schwesinger, W.H, Gunn, J.S (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70, 26402649.
  • [240]
    Peak, M.J, Peak, J.G, Stevens, F.J, Blamey, J, Mai, X, Zhou, Z.H, Adams, M.W (1994) The hyperthermophilic glycolytic enzyme enolase in the archaeon, Pyrococcus furiosus: comparison with mesophilic enolases. Arch. Biochem. Biophys. 313, 280286.
  • [241]
    Shoeman, R, Coleman, T, Redfield, B, Greene, R.C, Smith, A.A, Saint-Girons, I, Brot, N, Weissbach, H (1985) Regulation of methionine synthesis in Escherichia coli: effect of metJ gene product and S-adenosylmethionine on the in vitro expression of the metB, metL and metJ genes. Biochem. Biophys. Res. Commun. 133, 731739.
  • [242]
    Matsumura, H, Terada, M, Shirakata, S, Inoue, T, Yoshinaga, T, Izui, K, Kai, Y (1999) Plausible phosphoenolpyruvate binding site revealed by 2.6 Å structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli. FEBS Lett. 458, 9396.
  • [243]
    Cox, D.L, Baugh, C.L (1977) Carboxylation of phosphoenolpyruvate by extracts of Neisseria gonorrhoeae. J. Bacteriol. 129, 202206.
  • [244]
    Salvarrey, M.S, Cazzulo, J.J, Cannata, J.J (1995) Effects of divalent cations and nucleotides on the 14CO2-oxaloacetate exchange catalyzed by the phosphoenolpyruvate carboxykinase from the moderate halophile, Vibrio costicola. Biochem. Mol. Biol. Int. 36, 12251234.
  • [245]
    Mukhopadhyay, B, Concar, E.M, Wolfe, R.S (2001) A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J. Biol. Chem. 276, 1613716145.
  • [246]
    Noce, P.S, Utter, M.F (1975) Decarboxylation of oxaloacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 250, 90999105.
  • [247]
    Garcia-Olalla, C, Barrio, J.P, Garrido-Pertierra, A (1982) Isolation and kinetic properties of pyruvate kinase activated by fructose-1,6-bisphosphate from Salmonella typhimurium LT-2.I. Rev. Esp. Fisiol. 38, 409417.
  • [248]
    Kapoor, R, Venkitasubramanian, T.A (1981) Glucose 6-phosphate activation of pyruvate kinase from Mycobacterium smegmatis. Biochem. J. 193, 435440.
  • [249]
    Crow, V.L, Pritchard, G.G (1977) The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase. Biochim. Biophys. Acta 481, 105114.
  • [250]
    Yamada, T, Carlsson, J (1975) Glucose-6-phosphate-dependent pyruvate kinase in Streptococcus mutans. J. Bacteriol. 124, 562563.
  • [251]
    Cook, R.A (1983) Distinct metal cofactor-induced conformational states in the NAD-specific malic enzyme of Escherichia coli as revealed by proteolysis studies. Biochim. Biophys. Acta 749, 198203.
  • [252]
    Brown, D.A, Cook, R.A (1981) Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Biochemistry 20, 25032512.
  • [253]
    Meissner, G, Darling, E, Eveleth, J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25, 236244.
  • [254]
    Milrad de Forchetti, S.R, Cazzulo, J.J (1976) Some properties of the pyruvate carboxylase from Pseudomonas fluorescens. J. Gen. Microbiol. 93, 7581.
  • [255]
    Kimura, M, Ujihara, M, Yokoi, K (1996) Tissue manganese levels and liver pyruvate carboxylase activity in magnesium-deficient rats. Biol. Trace Elem. Res. 52, 171179.
  • [256]
    Thunell, S, Floderus, Y, Harper, P, Henrichson, A, Lindh, U, Marklund, S (1997) Pathogenic mechanisms of the acute porphyric attack: speculative roles of manganese associated enzymes. Cell Mol Biol. (Noisy.-le-grand) 43, 18.
  • [257]
    Chakraborty, S, Chakraborty, N, Jain, D, Salunke, D.M, Datta, A (2002) Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Protein Sci. 11, 21382147.
  • [258]
    Tanner, A, Bornemann, S (2000) Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J. Bacteriol. 182, 52715273.
  • [259]
    Tanner, A, Bowater, L, Fairhurst, S.A, Bornemann, S (2001) Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem. 276, 4362743634.
  • [260]
    Emiliani, E, Riera, B (1968) Enzymatic oxalate decarboxylation in Aspergillus niger. II. Hydrogen peroxide formation and other characteristics of the oxalate decarboxylase. Biochim. Biophys. Acta 167, 414421.
  • [261]
    Kesarwani, M, Azam, M, Natarajan, K, Mehta, A, Datta, A (2000) Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275, 72307238.
  • [262]
    Kessler, D. and Knappe, J. (1996) Anaerobic dissimilation of pyruvate. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), pp. 199–205. American Society for Microbiology, Washington, DC.
  • [263]
    Zhang, L, Crossley, M.J, Dixon, N.E, Ellis, P.J, Fisher, M.L, King, G.F, Lilley, P.E, MacLachlan, D, Pace, R.J, Freeman, H.C (1998) Spectroscopic identification of a dinuclear metal centre in manganese(II)-activated aminopeptidase P from Escherichia coli: Implications for human prolidase. J. Biol. Inorg. Chem. 3, 470483.
  • [264]
    Bond, C.S, White, M.F, Hunter, W.N (2001) High resolution structure of the phosphohistidine-activated form of Escherichia coli cofactor-dependent phosphoglycerate mutase. J. Biol. Chem. 276, 32473253.
  • [265]
    Fraenkel, D.G. (1996) Glycolysis. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), American Society for Microbiology, Washington, DC.
  • [266]
    Keech, D.B, Utter, M.F. Pyruvate carboxylase – properties. J. Biol. Chem. 238, 1963. 2609
  • [267]
    Scrutton, M.C, Utter, M.F, Mildvan, A.S (1966) Pyruvate carboxylase. VI. The presence of tightly bound manganese. J. Biol. Chem. 241, 34803487.
  • [268]
    Mildvan, A.S, Scrutton, M.C, Utter, M.F (1966) Pyruvate carboxylase. VII. A possible role for tightly bound manganese. J. Biol. Chem. 241, 34883498.
  • [269]
    Renner, E.D, Bernlohr, R.W (1972) Characterization and regulation of pyruvate carboxylase of Bacillus licheniformis. J. Bacteriol. 109, 764772.
  • [270]
    Goedken, E.R, Raschke, T.M, Marqusee, S (1997) Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H. Biochemistry 36, 72567263.
  • [271]
    Mol, C.D, Kuo, C.F, Thayer, M.M, Cunningham, R.P, Tainer, J.A (1995) Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381386.
  • [272]
    Ohtani, N, Haruki, M, Morikawa, M, Crouch, R.J, Itaya, M, Kanaya, S (1999) Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Biochemistry 38, 605618.
  • [273]
    Bouckaert, J, Loris, R, Poortmans, F, Wyns, L (1995) Crystallographic structure of metal-free concanavalin A at 2.5 Å resolution. Proteins 23, 510524.
  • [274]
    Sadhu, A, Magnuson, J.A (1989) Role of second metal ion in establishing active conformations of concanavalin A. Biochemistry 28, 31973204.
  • [275]
    Su, C, Sahlin, M, Oliw, E.H (2000) Kinetics of a manganese lipoxygenase with a catalytic mononuclear redox center. J. Biol. Chem. 275, 1883018835.