• [1]
    Beinert, H, Holm, R.H, Munck, E (1997) Iron–sulfur clusters: Nature's modular, multipurpose structures. Science 277, 653659.
  • [2]
    Price, N.M. and Morel, F.M.M. (1998) Biological cycling of iron in the ocean. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. 1–36. Marcel Dekker, New York.
  • [3]
    Touati, D (2000) Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 16.
  • [4]
    Abdul-Tehrani, H, Hudson, A.J, Chang, Y.S, Timms, A.R, Hawkins, C, Williams, J.M, Harrison, P.M, Guest, J.R, Andrews, S.C (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181, 14151428.
  • [5]
    Rouf, M.A (1964) Spectrochemical analysis of inorganic elements in bacteria. J. Bacteriol. 88, 15451549.
  • [6]
    Braun, V., Hantke, K. and Köster, W. (1998) Bacterial iron transport: mechanisms, genetics, and regulation. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. 67–145. Marcel Dekker, New York.
  • [7]
    Guerinot, M.L (1994) Microbial iron transport. Annu. Rev. Microbiol. 48, 743772.
  • [8]
    Köster, W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res. Microbiol. 152, 291301.
  • [9]
    Winkelmann, G. (Ed.) (2001) Microbial Transport Systems. Wiley-VCH, Weinheim.
  • [10]
    Byers, B.R. and Arceneaux, J.E.L. (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. Marcel Dekker, 37–66.
  • [11]
    Ratledge, C, Dover, L.G (2000) Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881941.
  • [12]
    Braun, V. (1985) The iron transport systems of Escherichia coli. In: The Enzymes of Biological Membranes (Martonosi, A.N., Ed.), pp. 617–652. Plenum Press, New York.
  • [13]
    Winkelmann, G (1991) Structural and sterochemical aspects of iron transport in fungi. Biotechnol. Adv. 8, 207231.
  • [14]
    Winkelmann, G (2002) Microbial siderophore-mediated transport. Biochem. Soc. Trans. 30, 691696.
  • [15]
    Drechsel, H. and Winkelmann, G. (1997) Iron chelation and siderophores. In: Transition Metals in Microbial Metabolism (Winkelmann, G. and Carrano, C.J., Eds.), pp 1–49. Harwood Academic, Amsterdam.
  • [16]
    Furrer, J.L, Sanders, D.N, Hook-Barnard, I.G, McIntosh, M.A (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol. Microbiol. 44, 12251234.
  • [17]
    Stintzi, A, Barnes, C, Xu, L, Raymond, K.N (2000) Microbial iron transport via a siderophore shuttle: A membrane ion transport paradigm. Proc. Natl. Acad. Sci. USA 97, 1069110696.
  • [18]
    Buchanan, S.K, Smith, B.S, Venkatramani, L, Xia, D, Esser, L, Palnitkar, M, Chakraborty, R, van der Helm, D, Deisenhofer, J (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 5663.
  • [19]
    Ferguson, A.D, Hofmann, E, Coulton, J.W, Diederichs, K, Welte, W (1998) Siderophore-mediated iron transport: Crystal structure of FhuA with bound lipopolysaccharide. Science 282, 22152220.
  • [20]
    Ferguson, A.D, Chakraborty, R, Smith, B.S, Esser, L, van der Helm, D, Deisenhofer, J (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295, 17151719.
  • [21]
    Killmann, H, Braun, M, Herrmann, C, Braun, V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J. Bacteriol. 183, 34763487.
  • [22]
    Usher, K.C, Ozkan, E, Gardner, K.H, Deisenhofer, J (2001) The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel protein. Proc. Natl. Acad. Sci. USA 98, 1067610681.
  • [23]
    Berman, H.M, Westbrook, J, Feng, Z, Gilliland, G, Bhat, T.N, Weissig, H, Shindyalov, I.N, Bourne, P.E (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235242.
  • [24]
    Silver, S. (1996) Transport of inorganic cations. In: Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt, F.C., Ed.), pp. 1091–1102. ASM Press, Washington, DC.
  • [25]
    Larsen, R.A, Thomas, M.G, Wood, G.E, Postle, K (1994) Partial suppression of an Escherichia coli TonB transmembrane domain mutation (DeltaV17) by a missense mutation in ExbB. Mol. Microbiol. 13, 627640.
  • [26]
    Higgs, P.I, Myers, P.S, Postle, K (1998) Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J. Bacteriol. 180, 60316038.
  • [27]
    Postle, K (1993) TonB protein and energy transduction between membranes. J. Bioenerg. Biomembr. 25, 591601.
  • [28]
    Cadieux, N, Kadner, R.J (1999) Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proc. Natl. Acad. Sci. USA 96, 1067310678.
  • [29]
    Braun, M, Killmann, H, Braun, V (1999) The beta-barrel domain of FhuA Delta 5-160 is sufficient for TonB-dependent FhuA activities of Escherichia coli. Mol. Microbiol. 33, 10371049.
  • [30]
    Scott, D.C, Cao, Z, Qi, Z, Bauler, M, Igo, J.D, Newton, S.M, Klebba, P.E (2001) Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J. Biol. Chem. 276, 1302513033.
  • [31]
    Higgs, P.I, Larsen, R.A, Postle, K (2002) Quantification of known components of the Escherichia coli TonB energy transducing system: TonB, ExbB, ExbD and FepA. Mol. Microbiol. 44, 271281.
  • [32]
    Reynolds, P.R, Mottur, G.P, Bradbeer, C (1980) Transport of vitamin B12 in Escherichia coli. Some observations on the roles of the gene products of BtuC and TonB. J. Biol. Chem. 255, 43134319.
  • [33]
    Wooldridge, K.G, Morrissey, J.A, Williams, P.H (1992) Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12 – role of envelope associated proteins and effect of endogenous siderophores. J. Gen. Microbiol. 138, 597603.
  • [34]
    Larsen, R.A, Thomas, M.G, Postle, K (1999) Proton motive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol. Microbiol. 31, 18091824.
  • [35]
    Letain, T.E, Postle, K (1997) TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Mol. Microbiol. 24, 271283.
  • [36]
    Chang, C.S, Mooser, A, Pluckthun, A, Wlodawer, A (2001) Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem. 276, 2753527540.
  • [37]
    Meyer, A.R, Payne, S.M (2001) Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol. Microbiol. 42, 835849.
  • [38]
    Clarke, T.E, Braun, V, Winkelmann, G, Tari, L.W, Vogel, H.J (2002) X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J. Biol. Chem. 277, 1396613972.
  • [39]
    Clarke, T.E, Ku, S.Y, Dougan, D.R, Vogel, H.J, Tari, L.W (2000) The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat. Struct. Biol. 7, 287291.
  • [40]
    Bruns, C.M, Nowalk, A.J, Arvai, A.S, McTigue, M.A, Vaughan, K.G, Mietzner, T.A, McRee, D.E (1997) Structure of Haemophilus influenzae Fe3+-binding protein reveals convergent evolution within a superfamily. Nat. Struct. Biol. 4, 919924.
  • [41]
    Mademidis, A, Killmann, H, Kraas, W, Flechsler, I, Jung, G, Braun, V (1997) ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol. Microbiol. 26, 11091123.
  • [42]
    Rohrbach, M.R, Braun, V, Köster, W (1995) Ferrichrome transport in Escherichia coli K-12: Altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J. Bacteriol. 177, 71867193.
  • [43]
    Fontecave, M, Coves, J, Pierre, J.L (1994) Ferric reductases or flavin reductases. BioMetals 7, 38.
  • [44]
    Earhart, C.F. (1996) Uptake and metabolism of iron and molybdenum. In: Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt, F.C., Ed.), pp. 1075–1090. ASM Press, Washington, DC.
  • [45]
    Heidinger, S, Braun, V, Pecarro, V.L, Raymond, K.N (1983) Iron supply to Escherichia coli by synthetic analogs of enterochelin. J. Bacteriol. 153, 109115.
  • [46]
    Venuti, M.C, Rastetter, W.H, Neilands, J.B (1979) 1,3,5-Tris (N,N′,N″-2,3-dihydroxybenzoyl) amino methyl benzene, a synthetic iron chelator related to enterobactin. J. Med. Chem. 22, 123124.
  • [47]
    Hantke, K (2001) Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172177.
  • [48]
    Patzer, S.I, Hantke, K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli. J. Bacteriol. 181, 33073309.
  • [49]
    Stojiljkovic, I, Cobeljic, M, Hantke, K (1993) Escherichia coli K-12 ferrous iorn uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS Microbiol. Lett. 108, 111115.
  • [50]
    Tsolis, R.M, Baumler, A.J, Heffron, F, Stojiljkovic, I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect. Immun. 64, 45494556.
  • [51]
    Velayudhan, J, Hughes, N.J, McColm, A.A, Bagshaw, J, Clayton, C.L, Andrews, S.C, Kelly, D.J (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol. Microbiol. 37, 274286.
  • [52]
    Cowart, R.E (2002) Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch. Biochem. Biophys. 400, 273281.
  • [53]
    Worst, D.J, Gerrits, M.M, Vandenbroucke, G.C, Kusters, G (1988) Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J. Bacteriol. 180, 14731479.
  • [54]
    Dancis, A, Klausner, R.D, Hinnebusch, A.G, Barriocanal, J.G (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 22942301.
  • [55]
    Nyhus, K.J, Wilborn, A.T, Jacobson, E.S (1997) Ferric iron reduction by Cryptococcus neoformans. Infect. Immun. 65, 434438.
  • [56]
    Robinson, N.J, Procter, C.M, Connolly, E.L, Guerinot, M.L (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397, 694697.
  • [57]
    McKie, A.T, Barrow, D, Latunde-Dada, G.O, Rolfs, A, Sager, G, Mudaly, E, Mudaly, M, Richardson, C, Barlow, D, Bomford, A, Peters, T.J, Raja, K.B, Shirali, S, Hediger, M.A, Farzaneh, F, Simpson, R.J (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 17551759.
  • [58]
    Janakiraman, A, Slauch, J.M (2000) The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35, 11461155.
  • [59]
    Zhou, D.G, Hardt, W.D, Galan, J.E (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect. Immun. 67, 19741981.
  • [60]
    Bearden, S.W, Perry, R.D (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32, 403414.
  • [61]
    Hantke, K (1997) Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium. J. Bacteriol. 179, 62016204.
  • [62]
    Bullen, J.J, Rogers, H.J, Griffiths, E (1978) Role of iron in bacterial infection. Curr. Top. Microbiol. Immunol. 80, 135.
  • [63]
    Litwin, C.M, Calderwood, S.B (1993) Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6, 137149.
  • [64]
    Calderwood, S.B, Mekalanos, J.J (1987) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169, 47594764.
  • [65]
    Williams, P.H, Warner, P.J (1980) ColV-plasmid mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect. Immun. 29, 411416.
  • [66]
    Warner, P.J, Williams, P.H, Bindereif, A, Neilands, J.B (1981) ColV plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli. Infect. Immun. 33, 723730.
  • [67]
    Cornelissen, C.N, Sparling, P.F (1994) Iron piracy: acquisition of transferring-bound iron by bacterial pathogens. Mol. Microbiol. 14, 843850.
  • [68]
    Lee, B.C, Schryvers, A.B (1988) Specificty of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol. Microbiol. 2, 827829.
  • [69]
    Schryvers, A.B, Morris, L.J (1988) Identification and characterization of the transferrin receptor for Neisseria meningitidis. Mol. Microbiol. 2, 281288.
  • [70]
    Tsai, J, Dyer, D.W, Sparling, P.F (1988) Loss of transferrin receptor activity in Neisseria meningitidis correlates with the inability to use transferrin as an iron source. Infect. Immun. 56, 31323138.
  • [71]
    Blanton, K.J, Biswas, G.D, Tsai, J, Adams, J, Dyer, D.W, Davis, S.M, Koch, G.G, Sen, P.K, Sparling, P.F (1990) Genetic evidence that Neisseria gonorrhoeae produces specific receptors for transferrin and lactoferrin. J. Bacteriol. 172, 52255235.
  • [72]
    Legrain, M, Mazarin, V, Irwin, S.W, Bouchon, B, Quentin-Millet, M.J, Jacobs, E, Schryvers, A.B (1993) Cloning and characterization of the Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene 130, 7380.
  • [73]
    Anderson, J.E, Sparling, P.F, Cornelissen, S.N (1994) Gonococcal transferrin-binding protein-2 facilitates but is not essential for transferrin utilization. J. Bacteriol. 176, 31623170.
  • [74]
    Otto, B.R, Sparrius, M, Verweij-van Vught, A.M.J.J, MacLaren, D.M (1990) Iron-regulated outer membrane protein of Bacteroides fragilis involved in heme uptake. Infect. Immun. 58, 39543958.
  • [75]
    Genco, C.A, Dixon, D.W (2001) Emerging strategies in microbial haem capture. Mol. Microbiol. 39, 111.
  • [76]
    Andrews, S.C (1998) Iron storage in bacteria. Adv. Microb. Phys. 40, 281351.
  • [77]
    Dautant, A, Meyer, J.B, Yariv, J, Precigoux, G, Sweet, R.M, Kalb, A.J, Frolow, F (1998) Structure of a monoclinic crystal from of cyctochrome b1 (Bacterioferritin) from E. coli. Acta Crystallogr. D Biol. Crystallogr. 54, 1624.
  • [78]
    Grant, R.A, Filman, D.J, Finkel, S.E, Kolter, R, Hogle, J.M (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 5, 294303.
  • [79]
    Ilari, A, Stefanini, S, Chiancone, E, Tsernoglou, D (2000) The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat. Struct. Biol. 7, 3843.
  • [80]
    Bozzi, M, Mignogna, G, Stefanini, S, Barra, D, Longhi, C, Valenti, P, Chiancone, E (1997) A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua. J. Biol. Chem. 272, 32593265.
  • [81]
    Zhao, G.H, Ceci, P, Ilari, A, Giangiacomo, L, Laue, T.M, Chiancone, E, Chasteen, N.D (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells – A ferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem. 277, 2768927696.
  • [82]
    Theil, E.C (1987) Ferritin: structure, gene regulation and cellular function in animals, plants and microorganisms. Annu. Rev. Biochem. 56, 289316.
  • [83]
    Touati, D, Jacques, M, Tardat, B, Bouchard, L, Despied, S (1995) Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: Protective role of superoxide dismutase. J. Bacteriol. 177, 23052314.
  • [84]
    Wai, S.N, Nakayama, K, Umene, K, Moriya, T, Amako, K (1996) Construction of a ferritin-deficient mutant of Campylobacter jejuni: Contribution of ferritin to iron storage and protection against oxidative stress. Mol. Microbiol. 20, 11271134.
  • [85]
    Bereswill, S, Waidner, U, Odenbreit, S, Lichte, F, Fassbinder, F, Bode, G, Kist, M (1998) Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology 144, 25052516.
  • [86]
    Romão, C.V, Louro, R, Timkovich, R, Lubben, M, Liu, M.Y, LeGall, J, Xavier, A.V, Teixeira, M (2000) Iron-coproporphyrin III is a natural cofactor in bacterioferritin from the anaerobic bacterium Desulfovibrio desulfuricans. FEBS Lett. 480, 213216.
  • [87]
    Watt, G.D, Frankel, R.B, Papaefthymiou, G.C, Spartalian, K, Stiefel, E.I (1986) Redox properties and Mössbauer spectroscopy of Azotobacter vinelandii bacterioferritn. Biochemistry 25, 43304336.
  • [88]
    Andrews, S.C, le Brun, N.E, Barynin, V, Thomson, A.J, Moore, G.R, Guest, J.R, Harrison, P.M (1995) Site-directed replacement of the coaxial heme ligands of bacterioferritin generates heme-free variants. J. Biol. Chem. 270, 2326823274.
  • [89]
    Quail, M.A, Jordan, P, Grogan, J.M, Butt, J.N, Lutz, M, Thomson, A.J, Andrews, S.C, Guest, J.R (1996) Spectroscopic and voltammetric characterisation of the bacterioferritin-associated ferredoxin of Escherichia coli. Biochem. Biophys. Res. Commun. 229, 635642.
  • [90]
    Garg, R.P, Vargo, C.J, Cui, X.Y, Kurtz, D.M (1996) A [2Fe–2S] protein encoded by an open reading frame upstream of the Escherichia coli bacterioferritin gene. Biochemistry 35, 62976301.
  • [91]
    da Costa, P.N, Romão, C, LeGall, J, Xavier, A.V, Melo, E, Teixeira, M, Saraiva, L.M (2001) The genetic organization of Desulfovibrio desulphuricans ATCC 27774 bacterioferritin and rubredoxin-2 genes: involvement of rubredoxin in iron metabolism. Mol. Microbiol. 41, 217227.
  • [92]
    Denoel, P.A, Crawford, R.M, Zygmunt, M.S, Tibor, A, Weynants, V.E, Godfroid, F, Hoover, D.L, Letesson, J.J (1997) Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages. Infect. Immun. 65, 43374340.
  • [93]
    Ma, J.F, Ochsner, U.A, Klotz, M.G, Nanayakkara, V.K, Howell, M.L, Johnson, Z, Posey, J.E, Vasil, M.L, Monaco, J.J, Hassett, D.J (1999) Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J. Bacteriol. 181, 37303742.
  • [94]
    Fridovich, I (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97112.
  • [95]
    Woodmansee, A.N, Imlay, J.A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J. Biol. Chem. 277, 3405534066.
  • [96]
    Repine, J.E, Fox, R.B, Berger, E.M (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcal iron to form hydroxyl radicals. J. Biol. Chem. 256, 70947096.
  • [97]
    Maringanti, S, Imlay, J (1999) An intracellular iron chelator pleitropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 282, 37923802.
  • [98]
    Keyer, K, Imlay, J.A (1996) Superoxide accelerates DNA-damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA 193, 1363513649.
  • [99]
    Escolar, L, Pérez-Martín, J, De Lorenzo, V (1999) Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181, 62236229.
  • [100]
    Hantke, K. and Braun, V. (2000) The art of keeping low and high iron concentrations in balance. In: Bacterial Stress Responses (Storz, G. and Hengge-Aronis, R., Eds.), pp 275–288. ASM Press, Washington, DC.
  • [101]
    Coy, M, Neilands, J.B (1991) Structural dynamics and functional domains of the Fur protein. Biochemistry 30, 82018210.
  • [102]
    Bagg, A, Neilands, J.B (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26, 54715477.
  • [103]
    Smith, A, Hooper, N.I, Shipulina, N, Morgan, W.T (1996) Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene of Escherichia coli. J. Protein Chem. 15, 575583.
  • [104]
    Jacquamet, L, Aberdam, D, Adrait, A, Hazemann, J.L, Latour, J.M, Michaud-Soret, I (1998) X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37, 25642571.
  • [105]
    Althaus, E.W, Outten, C.E, Olson, K.E, Cao, H, O'Halloran, T.V (1999) The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38, 65596569.
  • [106]
    Lewin, A.C, Doughty, P.A, Flegg, L, Moore, G.R, Spiro, S (2002) The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148, 24492456.
  • [107]
    Stojiljkovic, I, Hantke, K (1995) Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol. Gen. Genet. 247, 199205.
  • [108]
    Newman, D.L, Shapiro, J.A (1999) Differential fiu-lacZ fusion regulation linked to Escherichia coli colony development. Mol. Microbiol. 33, 1832.
  • [109]
    Escolar, L, Pérez-Martín, J, De Lorenzo, V (2000) Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli. J. Biol. Chem. 275, 2470924714.
  • [110]
    De Lorenzo, V, Giovannini, F, Herrero, M, Neilands, J.B (1988) Metal ion regulation of gene expression: Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J. Mol. Biol. 203, 875884.
  • [111]
    le Cam, E, Fréchon, D, Barray, M, Fourcade, A, Delain, E (1994) Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proc. Natl. Acad. Sci. USA 91, 1181611820.
  • [112]
    Escolar, L, Pérez-Martín, J, De Lorenzo, V (1998) Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J. Mol. Biol. 283, 537547.
  • [113]
    Lavrrar, J.L, Christoffersen, C.A, McIntosh, M.A (2002) Fur-DNA interactions at the bi-directional fepDGC-entS promoter region in Escherichia coli. J. Mol. Biol. 322, 983995.
  • [114]
    Baichoo, N, Helmann, J.D (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184, 58265832.
  • [115]
    Zheng, M, Doan, B, Schneider, T.D, Storz, G (1999) OxyR and SoxRS regulation of fur. J. Bacteriol. 181, 46394643.
  • [116]
    Watnick, P.I, Eto, T, Takahashi, H, Calderwood, S.B (1997) Purification of Vibrio cholerae Fur and estimation of intracellular abundance by antibody sandwich enzyme-linked immunoassay. J. Bacteriol. 179, 243247.
  • [117]
    Almiron, M, Link, A.J, Furlong, D (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6, 26462654.
  • [118]
    De Lorenzo, V, Herrero, M, Giovannini, F, Neilands, .B (1988) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur. J. Biochem. 173, 537546.
  • [119]
    Stojiljkovic, I, Baumler, A.J, Hantke, K (1994) Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J. Mol. Biol. 236, 531545.
  • [120]
    Park, S.-J, Gunsalus, R.P (1995) Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: Role of the arcA, fnr, and soxR gene products. J. Bacteriol. 177, 62556262.
  • [121]
    Vassinova, N, Kozyruv, D (2000) A method for direct cloning of Fur-regulated genes: identification of seven new Fur-regulated loci in Escherichia coli. Microbiology 146, 31713182.
  • [122]
    Touati, D (1988) Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J. Bacteriol. 170, 25112520.
  • [123]
    Hantke, K (1987) Selectiom procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol. Gen. Genet. 210, 135139.
  • [124]
    Foster, J.W, Hall, H.K (1992) Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J. Bacteriol. 174, 43174323.
  • [125]
    Hantke, K (2002) Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated FhuF protein. J. Mol. Microb. Biotechnol. 4, 217222.
  • [126]
    Gruer, M.J, Guest, J.R (1994) Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140, 25312541.
  • [127]
    Massé, E, Gottesman, S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 46204625.
  • [128]
    Tseng, C.P (1997) Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products. FEMS Microbiol. Lett. 157, 6772.
  • [129]
    Park, S.-J, Tseng, C.-P, Gunsalus, R.P (1995) Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: Role of ArcA and Fnr. Mol. Microbiol. 15, 473482.
  • [130]
    Fee, J.A (1991) Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol. Microbiol. 5, 25992610.
  • [131]
    Delany, I, Spohn, G, Rappuoli, R, Scarlato, V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol. 42, 12971309.
  • [132]
    Dubrac, S, Touati, D (2000) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J. Bacteriol. 182, 38023808.
  • [133]
    Dubrac, S, Touati, D (2002) Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148, 147156.
  • [134]
    Niederhoffer, E.C, Naranjo, C.M, Bradley, K.L, Fee, J.A (1990) Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J. Bacteriol. 172, 19301938.
  • [135]
    Bovy, A, De Vrieze, G, Lugones, L, Van Horssen, P, van der Berg, C, Borrias, M, Weisbeek, P (1993) Iron-dependent stability of the ferredoxin I transcripts from the cyanobacterial strains Synechococcus species PCC 7942 and Anabaena species PCC 7937. Mol. Microbiol. 7, 429439.
  • [136]
    Razquin, P, Schmitz, S, Fillat, M.F, Peleato, M.L, Böhme, H (1994) Transcriptional and translational analysis of ferredoxin and flavodoxin under iron and nitrogen stress in Anabaena sp. strain PCC 7120. J. Bacteriol. 176, 74097411.
  • [137]
    Crosa, J.H (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61, 319336.
  • [138]
    Ghassemian, M, Straus, N.A (1996) Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. Microbiology 142, 14691476.
  • [139]
    De Luca, N, Wexler, M, Pereira, M, Yeoman, K.H, Johnston, A.W (1998) Is the fur gene of Rhizobium leguminosarum essential. FEMS Microbiol. Lett. 168, 289295.
  • [140]
    Patzer, S.I, Hantke, K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28, 11991210.
  • [141]
    Bsat, N, Herbig, A, Casillas-Martinez, L, Setlow, P, Helmann, J.D (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29, 189198.
  • [142]
    Ochsner, U.A, Wilderman, P.J, Vasil, A.I, Vasil, M.L (2002) GeneChipR expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. 45, 12771287.
  • [143]
    Baichoo, N, Wang, T, Ye, R, Helmann, J.D (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45, 16131629.
  • [144]
    Angerer, A, Enz, S, Ochs, M, Braun, V (1995) Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. FecI belongs to a new subfamily of σ70-type factors that respond to extracytoplasmic stimuli. Mol. Microbiol. 18, 163174.
  • [145]
    Braun, V (1997) Surface signaling: Novel transcription initiation mechanism starting from the cell surface. Arch. Microbiol. 167, 325331.
  • [146]
    Stiefel, A, Mahren, S, Ochs, M, Schindler, P.T, Enz, S, Braun, V (2001) Control of the ferric citrate transport system of Escherichia coli: Mutations in region 2.1 of the FecI extracytoplasmic-function sigma factor suppress mutations in the FecR transmembrane regulatory protein. J. Bacteriol. 183, 162170.
  • [147]
    Visca, P, Leoni, L, Wilson, M.J, Lamont, I.L (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 11771190.
  • [148]
    McLennan, B.D, Buck, M, Humphreys, J, Griffiths, E (1981) Iron-related modification of bacterial transfer RNA. Nucleic Acids Res. 9, 26292640.
  • [149]
    Rosenberg, A.H, Gefter, M.L (1969) An iron-dependent modification of several transfer RNA specied in Escherichia coli. Mol. Biol. 46, 581584.
  • [150]
    Kox, L.F.F, Wösten, M.S.M, Groisman, E.A (2000) A small protein that mediates the activation of a two-component system by another two-component system. EMBO J. 19, 18611872.
  • [151]
    Tang, Y, Guest, J.R (1999) Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145, 30693079.
  • [152]
    Alen, C, Sonenshein, A.L (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl. Acad. Sci. USA 96, 1041210417.
  • [153]
    Wilson, T.J.G, Bertrand, N, Tang, J.L, Feng, J.X, Pan, M.Q, Barber, C.E, Dow, J.M, Daniels, M.J (1998) The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol. Microbiol. 28, 961970.
  • [154]
    Boyd, J, Oza, M.N, Murphy, J.R (1990) Molecular cloning and DNA sequence analysis of a diphtheria toxin iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 87, 59685972.
  • [155]
    Dussurget, O, Rodriguez, M, Smith, I (1996) An IdeR mutant of Mycrobacterium smegmatis has derepressed siderophore production and altered oxidative stress response. Mol. Microbiol. 22, 535544.
  • [156]
    Hill, P.J, Cockayne, A, Landers, P, Morrissey, .J.A, Sims, C.M, Williams, P (1998) SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect. Immun. 66, 41234129.
  • [157]
    Schmitt, M.P, Talley, B.G, Holmes, R.K (1997) Characterisation of lipoprotein IRP1 from Corynebacterium diphtheriae, which is regulated by the diphtheria toxin repressor (DtxR) and iron. Infect. Immun. 65, 53645367.
  • [158]
    Ding, X, Zeng, H, Schiering, N, Ringe, D, Murphy, J.R (1998) Identification of the primary metal ion-activation sites of the diphtheria, tox repressor by X-ray crystallography and site-directed mutational analysis. Nat. Struct. Biol. 3, 382387.
  • [159]
    Pohl, E, Holmes, R.K, Hol, W.G (1999) Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal sites fully occupied. J. Mol. Biol. 285, 11451156.
  • [160]
    Pohl, E, Holmes, R.K, Hol, W.G (1998) Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structures of apo- and holo-DtxR. J. Biol. Chem. 273, 2242022427.
  • [161]
    Panek, H, O'Brian, M.R (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148, 22732282.
  • [162]
    Hamza, I, Qi, Z, King, N.D, O'Brien, M.R (2000) Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum. Microbiology 146, 669676.
  • [163]
    Qi, Z, Hamza, I, O'Brien, M.R (1999) Heme is an effector moleculae for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc. Natl. Acad. Sci. USA 96, 1305613061.
  • [164]
    Qi, Z.H, O'Brian, M.R (2002) Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol. Cell 9, 155162.
  • [165]
    Spiro, T.G. (1982) Iron–Sulfur Proteins. Wiley, New York.
  • [166]
    Malkin, R, Rabinowitz, J.C (1966) The reconstitution of Clostridial ferredoxin. Biochem. Biophys. Res. Commun. 23, 822827.
  • [167]
    Zheng, L, Cash, V.L, Flint, D.H, Dean, D.R (1998) Assembly of iron–sulfur clusters – Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 1326413272.
  • [168]
    Frazzon, J, Dean, D.R (2001) Feedback regulation of iron–sulfur cluster biosynthesis. Proc. Natl. Acad. Sci. USA 26, 1475114753.
  • [169]
    Schwartz, C.J, Giel, J.L, Patschkowski, T, Luther, C, Ruzicka, F.J, Beinert, H, Kiley, P.J (2001) IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe–S cluster assembly proteins. Proc. Natl. Acad. Sci. USA 98, 1489514900.
  • [170]
    Zheng, M, Wang, X, Templeton, L.J, Smulski, D.R, LaRossa, R.A, Storz, G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 45624570.
  • [171]
    Archibald, F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett. 19, 2932.
  • [172]
    Weinberg, E.D (1997) The Lactobacilli anomaly: total iron abstinence. Perspect. Biol. Med. 40, 16.
  • [173]
    Posey, J.E, Gherardini, F.C (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288, 16511653.
  • [174]
    Ferguson, A.D, Braun, V, Fiedler, H.-P, Coulton, J.W, Diederichs, K, Welte, W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane protein FhuA. Protein Sci. 9, 956963.
  • [175]
    Kehres, D.G, Janakiraman, A, Slauch, J.M, Maguire, M.E (2002) SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. Bacteriology 184, 31593166.
  • [176]
    Kehres, D.G, Maguire, M.E (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in Salmonella. FEMS Microbiol. Rev. 27, 263290.
  • [177]
    Angerer, A, Gaisser, S, Braun, V (1990) Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggests a periplasmic-binding protein-dependent iron transport mechanism. J. Bacteriol. 172, 572578.
  • [178]
    Katoh, H, Hagino, N, Grossman, A.R, Ogawa, T (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183, 27792784.
  • [179]
    Adhikari, P, Berish, S.A, Nowalk, A.J, Veraldi, K.L, Morse, S.A, Mietzner, T.A (1996) The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J. Bacteriol. 178, 21452149.
  • [180]
    Nachin, L, Loiseau, L, Expert, D, Barras, F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J. 22, 427437.
  • [181]
    Kammler, M, Schon, C, Hantke, K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol. 175, 62126219.
  • [182]
    Marlovits, T.C, Haase, W, Herrmann, C, Aller, S.G, Unger, V.M (2002) The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc. Natl. Acad. Sci. USA 99, 1624316248.
  • [183]
    Patzer, S.I, Hantke, K (2001) Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J. Bacteriol. 183, 48064813.
  • [184]
    Pojl, E, Haller, J.C, Mijovilovich, A, Meyer-Klaucke, W, Garman, E, Vasil, M.L (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903915.