SEARCH

SEARCH BY CITATION

References

  • [1]
    Macnab, R.M. (1996) Flagella and motility. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C. et al., Eds.), pp. 123–145. American Society for Microbiology, Washington, DC.
  • [2]
    Fenchel, T (2002) Microbial behavior in a heterogeneous world. Science 296, 10681071.
  • [3]
    Childers, S.E, Ciufo, S, Lovley, D.R (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767769.
  • [4]
    Stanley, P.M (1983) Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel. Can. J. Microbiol. 29, 14931499.
  • [5]
    Pratt, L.A, Kotler, R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285293.
  • [6]
    Gardel, C.L, Mekalanos, J.J (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64, 22462255.
  • [7]
    Ciacci-Woolwine, F, Blomfield, I.C, Richardson, S.H, Mizel, S.B (1998) Salmonella flagellin induces tumor necrosis factor alfa in a human promocytic cell line. Infect. Immun. 6, 11271134.
  • [8]
    Eaton, K.A, Suerbaum, S, Josenhans, C, Krakowka, S (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64, 24452448.
  • [9]
    Ottemann, K.M, Miller, J.F (1997) Roles for motility in bacteria-host interactions. Mol. Microbiol. 24, 11091117.
  • [10]
    Josenhans, C, Suerbaum, S (2002) The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605614.
  • [11]
    Hayashi, F, Smith, K.D, Ozinsky, A, Hawn, T.R, Yi, E.C, Goodlett, D.R, Eng, J.K, Akira, S, Underhill, D.M, Aderem, A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 10991103.
  • [12]
    Dangl, J.L, Jones, J.D.G (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826833.
  • [13]
    Smith, K.D, Ozinsky, A (2002) Toll-like receptor-5 and the innate immune response to bacterial flagellin. Curr. Top. Microbiol. Immunol. 270, 93108.
  • [14]
    Akerley, B.J, Miller, J.F (1993) Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 175, 24682479.
  • [15]
    Akerley, B.J, Monack, D.M, Falkow, S, Miller, J.F (1992) The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174, 980990.
  • [16]
    Tominaga, A, Mahmoud, M.A, Mukaihara, T, Enomoto, M (1994) Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol. Microbiol. 12, 277285.
  • [17]
    Kapatral, V, Olson, J.W, Pepe, J.C, Miller, V.L, Minnich, S.A (1996) Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol. Microbiol. 19, 10611071.
  • [18]
    Parkhill, J, Wren, B.W, Thomson, N.R, Titball, R.W, Holden, M.T, Prentice, M.B (2001) Complete genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523527.
  • [19]
    Moens, S, Vanderleyden, J (1996) Function of bacterial flagella. Crit. Rev. Microbiol. 22, 67100.
  • [20]
    Thomas, N.A, Bardy, S.L, Jarrell, K.F (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25, 147174.
  • [21]
    Joys, T.M (1988) The flagellar filament protein. Can. J. Microbiol. 34, 452458.
  • [22]
    Wilson, D.R, Beveridge, T.J (1993) Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 39, 451472.
  • [23]
    McCarter, L.L (1995) Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177, 15951609.
  • [24]
    Tarrand, J.J, Krieg, N.R, Dobereiner, J (1978) A taxonomic study of the Spirillum lipoferum group with description of a new genus Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24, 967980.
  • [25]
    Komeda, Y (1982) Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J. Bacteriol. 150, 1626.
  • [26]
    Komeda, Y (1986) Transcriptional control of flagellar genes in Escherichia coli K-12. J. Bacteriol. 168, 13151318.
  • [27]
    Kutsukake, K, Ohya, Y, Iino, T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741747.
  • [28]
    Arora, S.K, Ritchings, B.W, Almira, E.C, Lory, S, Ramphal, R (1997) A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 179, 55745581.
  • [29]
    Ritchings, B.W, Almira, E.C, Lory, S, Ramphal, R (1995) Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect. Immun. 63, 48684876.
  • [30]
    Klose, K.E, Mekalanos, J.J (1998) Distinct roles of an alternative sigma factor during free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28, 501520.
  • [31]
    Prouty, M.G, Correa, N.E, Klose, K.E (2001) The novel σ54- and σ28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39, 15951609.
  • [32]
    Claret, L, Hughes, C (2000) Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J. Bacteriol. 182, 833836.
  • [33]
    Li, C, Louise, C.J, Shi, W, Adler, J (1993) Adverse conditions which cause lack of flagella in Escherichia coli. J. Bacteriol. 175, 22292235.
  • [34]
    Shi, W, Li, C, Louise, C, Adler, J (1993) Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J. Bacteriol. 175, 22362240.
  • [35]
    Soutourina, O.A, Krin, E, Laurent-Winter, C, Hommais, F, Danchin, A, Bertin, P.N (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148, 15431551.
  • [36]
    Bertin, P, Terao, E, Lee, E.H, Lejeune, P, Colson, C, Danchin, A, Collatz, E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 176, 55375540.
  • [37]
    Soutourina, O, Kolb, A, Krin, E, Laurent-Winter, C, Rimsky, S, Danchin, A, Bertin, P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: Role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181, 75007508.
  • [38]
    Romeo, T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 13211330.
  • [39]
    Wei, B.L, Brun-Zinkernagel, A.-M.B, Simecka, J.W, Pruss, B, Babitzke, P, Romeo, T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40, 245256.
  • [40]
    Komeda, Y, Kutsukake, K, Iino, T (1980) Definition of additional flagellar genes in Escherichia coli K12. Genetics 94, 277290.
  • [41]
    Kutsukake, K, Ohya, Y, Yamagushi, S, Iino, T (1988) Operon structure of flagellar genes in Salmonella typhimurium. Mol. Gen. Genet. 214, 1115.
  • [42]
    Kim, Y.K, McCarter, L.L (2000) Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 182, 36933704.
  • [43]
    Ohnishi, I, Kutsukake, K, Suzuki, H, Iino, T (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221, 11391147.
  • [44]
    Kutsukake, K, Iyoda, S, Ohnishi, K, Iino, T (1994) Genetic and molecular analyses of the interaction between the flagellum-specific sigma and anti-sigma factors in Salmonella typhimurium. EMBO J. 13, 45684576.
  • [45]
    Ohnishi, I, Kutsukake, K, Suzuki, H, Iino, T (1992) A novel transcriptional regulatory mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor σ F. Mol. Microbiol. 6, 31493157.
  • [46]
    Hughes, K.T, Gillen, K.L, Semon, M.J, Karlinsey, J.E (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 277280.
  • [47]
    Wu, J, Newton, A (1997) Regulation of the Caulobacter flagellar gene hierarchy: not just for motility. Mol. Microbiol. 24, 233239.
  • [48]
    Reitzer, L.J, Magasanik, B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45, 785792.
  • [49]
    Porter, S.C., North, A.K. and Kustu, S. (1995) Mechanism of transcriptional activation by NTRC. In: Two-component Signal Transduction (Hoch, J.A. and Silhavy, T.J., Eds.), pp. 147–158. American Society for Microbiology Press, Washington, DC.
  • [50]
    Klose, K.E, Mekalanos, J.J (1998) Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180, 303316.
  • [51]
    McCarter, L.L (2001) Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445462.
  • [52]
    McCarter, L.L, Wright, M.E (1993) Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J. Bacteriol. 175, 33613371.
  • [53]
    Ballado, T, Camarena, L, Gonzalez-Pedrajo, B, Silva-Herzog, E, Dreyfus, G (2001) The hook gene (flgE) is expressed from the flgBCDEF operon in Rhodobacter sphaeroides: study of an flgE mutant. J. Bacteriol. 183, 16801687.
  • [54]
    Garcia, N, Campos, A, Osorio, A, Poggio, S, Gonzalez-Pedrajo, B, Camarena, L, Dreyfus, G (1998) The flagellar switch genes fliM and fliN of Rhodobacter sphaeroides are contained in a large flagellar gene cluster. J. Bacteriol. 180, 39783982.
  • [55]
    Poggio, S, Aguilar, C, Osorio, A, Gonzalez-Pedrajo, B, Dreyfus, G, Camarena, L (2000) Sigma-54 promoters control expression of genes encoding the hook and basal body complex in Rhodobacter sphaeroides. J. Bacteriol. 182, 57875792.
  • [56]
    Spohn, G, Scarlato, V (1999) Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J. Bacteriol. 181, 593599.
  • [57]
    Jagannathan, A, Constantinidou, C, Penn, C.W (2001) Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183, 29372942.
  • [58]
    Sourjik, V, Muschler, P, Scharf, B, Schmitt, R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J. Bacteriol. 182, 782788.
  • [59]
    Ordal, G.W., Marquez-Magana, L. and Chamberlin, M.J. (1993) Motility and chemotaxis. In: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (Sonenshein, A.L. et al., Eds.), pp. 123–145. American Society for Microbiology, Washington, DC.
  • [60]
    Mirel, D.B, Lauer, P, Chamberlin, M.J (1994) Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. J. Bacteriol. 176, 44924500.
  • [61]
    West, J.T, Estacio, W, Marquez-Magana, L (2000) Relative roles of the fla/che P-A, PD-3, and P-sigD promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182, 48414848.
  • [62]
    Pruss, B (2000) FlhD, a transcriptional regulator in bacteria. Recent Res. Dev. Microbiol. 4, 3142.
  • [63]
    Chilcott, G.S, Hughes, K.T (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica Serovar typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694708.
  • [64]
    Liu, X, Matsumura, P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176, 73457351.
  • [65]
    Yanagihara, S, Iyoda, S, Ohnishi, K, Iino, T, Kutsukake, K (1999) Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet. Syst. 74, 105111.
  • [66]
    Bartlett, D.H, Frantz, B.B, Matsumura, P (1988) Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J. Bacteriol. 170, 15751581.
  • [67]
    Claret, L, Hughes, C (2002) Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. J. Mol. Biol. 321, 185199.
  • [68]
    Liu, X, Fujita, N, Ishihama, A, Matsumura, P (1995) The C-terminal region of the α subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J. Bacteriol. 177, 51865188.
  • [69]
    Campos, A, Zhang, R, Alkire, R, Matsumura, P, Westbrook, E (2001) Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 Å resolution. Mol. Microbiol. 39, 567580.
  • [70]
    Campos, A, Matsumura, P (2001) Extensive alanine scanning reveals protein-protein and protein-DNA interaction surfaces in the global regulator FlhD from Escherichia coli. Mol. Microbiol. 39, 581594.
  • [71]
    Claret, L, Hughes, C (2000) Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J. Mol. Biol. 303, 467478.
  • [72]
    Wang, S, Matsumura, P, Westbrook, E.M (2001) Crystallization and preliminary X-ray crystallographic analysis of FlhD/FlhC complex from Escherichia coli. Acta Crystallogr. D 57, 734736.
  • [73]
    Soutourina, O.A, Semenova, E.A, Parfenova, V.V, Danchin, A, Bertin, P (2001) Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl. Environ. Microbiol. 67, 38523859.
  • [74]
    Brun, Y.V, Shapiro, L (1992) A temporally controlled σ-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6, 23952408.
  • [75]
    Casaz, P, Happel, A, Keithan, J, Read, D.L, Strain, S.R, Levy, S.B (2001) The Pseudomonas fluorescens transcription activator AdnA is required for adhesion and motility. Microbiology 147, 355361.
  • [76]
    Totten, P.A, Lara, J.C, Lory, S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol. 172, 389396.
  • [77]
    Hirschman, J, Wong, P.-K, Sei, K, Keener, J, Kustu, S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proc. Natl. Acad. Sci. USA 82, 75257529.
  • [78]
    Ishimoto, K.S, Lory, S (1989) Formation of pilin in Pseudomonas aeruginosa requires the alternative σ factor (RpoN) subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 86, 19541957.
  • [79]
    Jyot, J, Dasgupta, N, Ramphal, R (2002) FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 184, 52515260.
  • [80]
    Pelton, J.G, Kustu, S, Wemmer, D.E (1999) Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J. Mol. Biol. 292, 10951110.
  • [81]
    Volkman, B.F, Nohaile, M.J, Kustu, S, Wemmer, D.E (1995) Three-dimensional solution structure of the N-terminal receiver domain of NtrC. Biochemistry 34, 14131424.
  • [82]
    Stock, J.B, Stock, A.M, Mottonen, J.M (1990) Signal transduction in bacteria. Nature 344, 395400.
  • [83]
    Beier, D, Frank, R (2000) Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. 182, 20682076.
  • [84]
    Stock, J.B. and Surette, M.G. (1996) Chemotaxis. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C. et al., Eds.), pp. 1103–1129. American Society for Microbiology, Washington, DC.
  • [85]
    Aizawa, S.-I, Harwood, C.S, Kadner, R.J (2000) Signaling components in bacterial locomotion and sensory reception. J. Bacteriol. 182, 14591471.
  • [86]
    Armitage, J.P (1999) Bacterial tactic responses. Adv. Microb. Physiol. 41, 229289.
  • [87]
    Adler, J, Templeton, B (1967) The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46, 175184.
  • [88]
    Guzzo, A, Diorio, C, DuBow, M.S (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl. Environ. Microbiol. 57, 22552259.
  • [89]
    Landini, P, Zehnder, A.J (2002) The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J. Bacteriol. 184, 15221529.
  • [90]
    Walker, S.L, Sojka, M, Dibb-Fuller, M, Woodward, M.J (1999) Effect of pH, temperature and surface contact on the elaboration of fimbriae and flagella by Salmonella serotype Enteritidis. J. Med. Microbiol. 48, 253261.
  • [91]
    Alm, R.A, Guerry, P, Trust, T.J (1993) The Campylobacter σ54 flaB flagellin promoter is subject to environmental regulation. J. Bacteriol. 175, 44484455.
  • [92]
    Kiiyukia, C, Kawakami, H, Hashimoto, H (1993) Effect of sodium chloride, pH and organic nutrients on the motility of Vibrio cholerae non-O1. Microbios 73, 249255.
  • [93]
    Kunin, C.M, Hua, T.H, Bakaletz, L.O (1995) Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Infect. Immun. 63, 17961799.
  • [94]
    D'Mello, A, Yotis, W.W (1987) The action of sodium deoxycholate on Escherichia coli. Appl. Environ. Microbiol. 53, 19441946.
  • [95]
    Roessler, M, Muller, V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J. Bacteriol. 184, 62076215.
  • [96]
    Rashid, M.H, Kornberg, A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97, 48854890.
  • [97]
    Kapatral, V, Minnich, S.A (1995) Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol. Microbiol. 17, 4956.
  • [98]
    Peel, M, Donachie, W, Shaw, A (1988) Physical and antigenic heterogeneity in the flagellins of Listeria monocytogenes and L. ivanovii. J. Gen. Microbiol. 134, 25932598.
  • [99]
    Ott, M, Messner, P, Hessemann, J, Marre, R, Hacker, J (1991) Temperature dependent expression of flagella in Legionella. J. Gen. Microbiol. 137, 19551961.
  • [100]
    Negrete-Abascal, E, Reyes, M.E, Garcia, R.M, Vaca, S, Giron, J.A, Garcia, O, Zenteno, E, de la Garza, M (2003) Flagella and motility in Actinobacillus pleuropneumoniae. J. Bacteriol. 185, 664668.
  • [101]
    Skorupski, K, Taylor, R.K (1997) Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25, 10031009.
  • [102]
    Strauss, E.J (1995) Bacterial pathogenesis. When a turn off is a turn on. Curr. Biol. 5, 706709.
  • [103]
    Camilli, A, Mekalanos, J.J (1995) Use of resombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18, 671683.
  • [104]
    Akerley, B.J, Cotter, P.A, Miller, J.F (1995) Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80, 611620.
  • [105]
    Akerley, B.J, Miller, J.F (1996) Understanding signal transduction during bacterial infection. Trends Microbiol. 4, 141146.
  • [106]
    Coote, J.G (2001) Environmental sensing mechanisms in Bordetella. Adv. Microb. Physiol. 44, 141181.
  • [107]
    Goodier, R.I, Ahmer, B.M.M (2001) SirA orthologs affect both motility and virulence. J. Bacteriol. 183, 22492258.
  • [108]
    Hammer, B.K, Tateda, E.S, Swanson, M.S (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol. Microbiol. 44, 107118.
  • [109]
    Suzuki, K, Wang, X, Weilbacher, T, Pernestig, A.K, Melefors, O, Georgellis, D, Babitzke, P, Romeo, T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184, 51305140.
  • [110]
    Boles, B.R, McCarter, L.L (2002) Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. 184, 59465956.
  • [111]
    Yokota, T, Gots, J (1970) Requirement of adenosine 3′,5′-cyclic monophosphate for flagellation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 103, 513516.
  • [112]
    Komeda, Y.H.S, Ishidsu, J.I, Iino, T (1975) The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142, 289298.
  • [113]
    Silverman, M, Simon, M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120, 11961203.
  • [114]
    Vogler, A.P, Lengeler, J.W (1987) Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12. J. Bacteriol. 169, 593599.
  • [115]
    Shi, W, Zhou, Y, Wild, J, Adler, J, Gross, C.A (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174, 62566263.
  • [116]
    Shin, S, Park, C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177, 46964702.
  • [117]
    Pruss, B.M (1998) Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170, 141146.
  • [118]
    Fuqua, C, Winans, S.C, Greenberg, E.P (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269275.
  • [119]
    Sperandio, V, Torres, A.G, Kaper, J.B (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809821.
  • [120]
    Zhu, J, Miller, M.B, Vance, R.E, Dziejman, M, Bassler, B.L, Mekalanos, J.J (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99, 31293134.
  • [121]
    Diggle, S.P, Winzer, K, Lazdunski, A, Williams, P, Camara, M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184, 25762586.
  • [122]
    Anderson, P, Bauer, W (1978) Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry 17, 594601.
  • [123]
    Goldstein, E, Drlica, K (1984) Regulation of bacterial DNA supercoiling: plasmid linking number vary with growth temperature. Proc. Natl. Acad. Sci. USA 81, 40464050.
  • [124]
    Higgins, C.F, Cairney, J, Stirling, D.A, Sutherland, L, Booth, I.R (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem. Sci. 12, 339344.
  • [125]
    Higgins, C.F, Dorman, C.J, Stirling, D.A, Waddell, L, Booth, I.R, May, G, Bremer, E (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569584.
  • [126]
    Hommais, F, Krin, E, Laurent-Winter, C, Soutourina, O, Malpertuy, A, le Caer, J.-P, Danchin, A, Bertin, P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40, 2036.
  • [127]
    Hulton, C.S.J, Seirafi, A, Hinton, J.C.D, Sidebotham, J, Waddell, L, Pavitt, G.D, Owen-Hughes, T, Spassky, A, Buc, H, Higgins, C (1990) Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63, 631642.
  • [128]
    Marshall, D.G, Bowe, F, Hale, C, Dougan, G, Dorman, C.J (2000) DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. Phil. Trans. R. Soc. Lond. B 355, 565574.
  • [129]
    Nishida, S, Mizushima, T, Miki, T, Sekimizu, K (1997) Immotile phenotype of an Escherichia coli mutant lacking the histone-like protein HU. FEMS Microbiol. Lett. 150, 297301.
  • [130]
    Mizushima, T, Koyanagi, R, Katayama, T, Miki, T, Sekimizu, K (1997) Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol. Pharm. Bull. 20, 327331.
  • [131]
    Osuna, R, Lienau, D, Hughes, K.T, Johnson, R.C (1995) Sequence, regulation, and function of fis in Salmonella typhimurium. J. Bacteriol. 177, 20212032.
  • [132]
    Hay, N.A, Tipper, D.J, Gygi, D, Hughes, C (1997) A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J. Bacteriol. 179, 47414746.
  • [133]
    Hinton, J.C.D, Santos, D.S, Seirafi, A, Hulton, C.J, Pavitt, G.D, Higgins, C.F (1992) Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol. Microbiol. 6, 23272337.
  • [134]
    Nasser, W, Faelen, M, Hugouvieux-Cotte-Pattat, N, Reverchon, S (2001) Role of the nucleoid-associated protein H-NS in the synthesis of virulence factors in the phytopathogenic bacterium Erwinia chrysanthemi. Mol. Plant Microbe Interact. 14, 1020.
  • [135]
    Soutourina, O. (2001) Control of Gene Expression in the Motility Process in Gram-negative Bacteria. Ph.D. Thesis, University of Versailles-Saint-Quentin, Paris.
  • [136]
    Condon, C, Putzer, H, Luo, D, Grunberg-Manago, M (1997) Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J. Mol. Biol. 268, 235242.
  • [137]
    Putzer, H., Grunberg-Manago, M. and Springer, M. (1995) Bacterial aminoacyl-tRNA synthetases: genes and regulation of expression. In: tRNA: Structure, Biosynthesis and Function (Soll, D. and RajBhandary, U.L., Eds.), pp. 293–333. American Society for Microbiology, Washington, DC.
  • [138]
    Sacerdot, C, Caillet, J, Graffe, M, Eyermann, F, Ehresmann, B, Ehresmann, C, Springer, M, Romby, P (1998) The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol. Microbiol. 29, 10771090.
  • [139]
    Winstanley, C, Morgan, A.W (1997) The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology 143, 30713084.
  • [140]
    Quon, K.C, Marczynski, G.T, Shapiro, L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 8393.
  • [141]
    Rohde, J.R, Fox, J.M, Minnich, S.A (1994) Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol. Microbiol. 12, 187199.
  • [142]
    Sanchez-Campillo, M, Shaynoor, D, Gomez-Gomez, J.M, Michel, E, Dehoux, P, Cossart, P, Baquero, F, Perez-Diaz, J.C (1995) Modulation of DNA topology by flaR, a new gene from Listeria monocytogenes. Mol. Microbiol. 18, 801811.
  • [143]
    Salanoubat, M, Genin, S, Artiguenave, F, Gouzy, J, Mangenot, S, Arlat, M (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497502.
  • [144]
    Furness, R.B, Fraser, G.M, Hay, N.A, Hughes, C (1997) Negative feedback from a Proteus class II flagella export defect to the flhDC master operon controlling cell division and flagellum assembly. J. Bacteriol. 179, 55855588.
  • [145]
    Dufour, A, Furness, R.B, Hughes, C (1998) Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol. Microbiol. 29, 741751.
  • [146]
    Li, X, Rasko, D.A, Lockatell, C.V, Johnson, D.E, Mobley, H.L.T (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J. 20, 48544862.
  • [147]
    Ko, M, Park, C (2000) H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 46704672.
  • [148]
    Lehnen, D, Blumer, C, Polen, T, Wackwitz, B, Wendisch, V.F, Unden, G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521532.
  • [149]
    Tomoyasu, T, Ohkishi, T, Ukyo, Y, Tokumitsu, A, Takaya, A, Suzuki, M, Sekiya, K, Matsui, H, Kutsukake, K, Yamamoto, T (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J. Bacteriol. 184, 645653.
  • [150]
    Campoy, S, Jara, M, Busquets, N, Perez de Rozas, A.M, Badiola, I, Barbe, J (2002) Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants. Microbiology 148, 10391048.
  • [151]
    Kutsukake, K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254, 440448.
  • [152]
    Yokota, T, Kuwahara, S (1974) Adenosine 3′,5′-cyclic monophosphate-deficient mutants of Vibrio cholerae. J. Bacteriol. 120, 106113.
  • [153]
    Skorupski, K, Taylor, R.K (1997) Sequence and functional analysis of the gene encoding Vibrio cholerae cAMP receptor protein. Gene 198, 273303.
  • [154]
    Stover, C.K, Pham, X.Q, Erwin, A.L, Mizoguchi, S.D, Warrener, P, Hickey, M.J, Brinkman, F.S.L (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959964.
  • [155]
    Dasgupta, N, Ferrell, E.P, Kanack, K.J, West, S.E.H, Ramphal, R (2002) fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is σ70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J. Bacteriol. 184, 52405250.
  • [156]
    Oberto, J, Rouviere-Yaniv, J (1996) Serratia marcescens contains a heterodimeric HU protein like Escherichia coli and Salmonella typhimurium. J. Bacteriol. 178, 293297.
  • [157]
    Delic-Attree, I, Toussaint, B, Vignais, P.M (1995) Cloning and sequence analysis of the genes coding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa. Gene 154, 6164.
  • [158]
    Bartels, F, Fernandez, S, Holtel, A, Timmis, K.N, De Lorenzo, V (2001) The essential HupB and HupN proteins of Pseudomonas putida provide redundant and nonspecific DNA-bending functions. J. Biol. Chem. 276, 1664116648.
  • [159]
    Micka, B, Groch, N, Heinemann, U, Marahiel, M.A (1991) Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J. Bacteriol. 173, 31913198.
  • [160]
    Tendeng, C, Badaut, C, Krin, E, Gounon, P, Ngo, S, Danchin, A, Rimske, S, Bertin, P (2000) Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J. Bacteriol. 182, 20262032.
  • [161]
    Kunst, F, Ogasawara, N, Moszer, I, Albertini, A.M, Alloni, G (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249256.
  • [162]
    Pruss, B.M, Matsumura, P (1996) A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J. Bacteriol. 178, 668674.
  • [163]
    Pruss, B.M, Matsumura, P (1997) Cell cycle regulation of flagellar genes. J. Bacteriol. 179, 56025604.
  • [164]
    Byrne, B, Swanson, M.S (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 66, 30293034.
  • [165]
    Pruss, B.M, Liu, X, Hendrickson, W, Matsumura, P (2001) FlhD/FlhC-regulated promoters analysed by gene array and lacZ gene fusions. FEMS Microbiol. Lett. 9854, 17.
  • [166]
    Pruss, B.M, Campbell, J.W, Van Dyk, T.K, Zhu, C, Kogan, Y, Matsumura, P (2003) FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J. Bacteriol. 185, 534543.
  • [167]
    Young, G.M, Schmiel, D.H, Miller, V.L (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96, 64566461.
  • [168]
    Schmiel, D.H, Young, G.M, Miller, V.L (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182, 23142320.
  • [169]
    Bleves, S, Marenne, M.-N, Detry, G, Cornelis, G.R (2002) Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J. Bacteriol. 184, 32143223.
  • [170]
    Givskov, M, Molin, S (1992) Expression of extracellular phospholipase from Serratia liquefaciens is growth-phase dependent, catabolite repressed and regulated by anaerobiosis. Mol. Microbiol. 6, 13631374.
  • [171]
    Givskov, M, Ebert, L, Christiansen, G, Benedik, M.J, Molin, S (1995) Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhDC. Mol. Microbiol. 15, 445454.
  • [172]
    Givaudan, A, Lanois, A (2000) flhDC, the flagellar master operon of Xenorhabdus nematophilus: Requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J. Bacteriol. 182, 107115.
  • [173]
    Liu, J.H, Lai, M.J, Ang, S, Shu, J.W, Soo, P.C, Horng, Y.T, Yi, W.C, Lai, H.C, Luh, K.T, Ho, S.W, Swift, S (2000) Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J. Biomed. Sci. 7, 475483.
  • [174]
    Eberl, L, Christiansen, G, Molin, S, Givskov, M (1996) Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhDC master operon. J. Bacteriol. 178, 554559.
  • [175]
    Robleto, E.A, Lopez-Hernandez, I, Silby, M.W, Levy, S.B (2003) Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J. Bacteriol. 185, 453460.
  • [176]
    Glagolev, A.N, Skulachev, V.P (1978) The proton pump is a molecular engine of motile bacteria. Nature 272, 280282.
  • [177]
    Khan, S, Macnab, R.M (1980) Proton chemical potential, proton electrical potential and bacterial motility. J. Mol. Biol. 138, 599614.
  • [178]
    Hase, C.C, Mekalanos, J.J (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 96, 31833187.
  • [179]
    Lowe, G, Meister, M, Berg, H.C (1987) Rapid rotation of flagellar bundles in swimming bacteria. Nature 325, 637640.
  • [180]
    Magariyama, Y, Sugiyama, S, Muramoto, K, Maekawa, I, Kawagishi, I, Imae, Y. Very fast flagellar rotation. Nature. 371, 1994. 752
  • [181]
    Atsumi, T, McCarter, L, Imae, Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182184.
  • [182]
    Atsumi, T, Maekawa, Y, Yamada, T, Kawagishi, I, Imae, Y, Homma, M (1996) Effect of viscosity on swimming by the lateral and polar flagellar of Vibrio alginolyticus. J. Bacteriol. 178, 50245026.
  • [183]
    Gosink, K.K, Hase, C.C (2000) Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. J. Bacteriol. 182, 42344240.
  • [184]
    McGee, K, Horstendt, P, Milton, D.L (1996) Identification and characterization of additional flagellin genes from Vibrio anguillarum. J. Bacteriol. 178, 51885198.
  • [185]
    Totten, P.A, Lory, S (1990) Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J. Bacteriol. 172, 71887199.
  • [186]
    Nelson, K.E, Weinel, C, Paulsen, I.T, Dodson, R.J, Hilbert, H, Martins dos Santos, V.A, Fouts, D.E (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799808.
  • [187]
    Heidelberg, J.F, Eisen, J.A, Nelson, W.C, Clayton, R.A, Gwinn, M.L, Dodson, R.J, Haft, D.H, Hickey, E.K, Peterson, J.D (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477483.
  • [188]
    Hengge-Aronis, R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2, 148152.
  • [189]
    Relaix, F, Buckingham, M (1999) From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev. 13, 31713178.
  • [190]
    Huang, S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77, 469480.
  • [191]
    Thompson, J.D, Higgins, D.G, Gibson, T.J (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.