• [1]
    Bauld, J. (1981) Occurrence of benthic microbial mats in saline lakes. Hydrobiology 81, 87111.
  • [2]
    Williams, W.D. (1986) Limnology, the study of inland waters: a comment on perceptions of studies on salt lakes, past and present. In: Limnology in Australia (De Deckker, P. and Williams, W.D., Eds.), pp. 471–496. Dr. W. Junk Publisher, Dordrecht.
  • [3]
    Guerrero, M.C., De Wit, R. (1992) Microbial mats in the inland saline lakes of Spain. Limnetica 8, 197204.
  • [4]
    Valero-Garces, B.L., Navas, A., Machin, J., Stevenson, T., Davis, B. (2000) Responses of a saline lake ecosystem in a semiarid region to irrigation and climate variability – The history of Salada Chiprana, central Ebro basin, Spain. Ambio 29, 344350.
  • [5]
    Vidondo, B., Martinez, B., Montes, C., Guerrero, M.C. (1993) Physicochemical characteristics of a permanent Spanish hypersaline lake – La-Salada-De-Chiprana (Ne Spain). Hydrobiology 267, 113125.
  • [6]
    Diaz, P., Guerrero, M.C., Alcorlo, P., Baltanas, A., Florin, M., Montes, C. (1998) Anthropogenic perturbations to the trophic structure in a permanent hypersaline shallow lake: La Salada de Chiprana (north-eastern Spain). Int. J. Salt Lake Res. 7, 187210.
  • [7]
    Vila, X., Guyoneaud, R., Cristina, X.P., Figueras, J.B., Abella, C.A. (2002) Green sulfur bacteria from hypersaline Chiprana Lake (Monegros, Spain): habitat description and phylogenetic relationships of isolated strains. Photosynth. Res. 71, 165172.
  • [8]
    Clarke, T., Owens, N. (1983) A simple and versatile micro-computer program for the determination of ‘most probable number’. J. Microbiol. Methods 1, 133137.
  • [9]
    Widdel, F. and Bak, F. (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The Prokaryotes, 2nd Edn. (Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H., Eds.), pp. 3353–3378. Springer, New York.
  • [10]
    Heijthuijsen, J., Hansen, T.A. (1986) Interspecies hydrogen transfer in cocultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol. Ecol. 38, 5764.
  • [11]
    Muyzer, G., Teske, A., Wirsen, C.O., Jannasch, H.W. (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16s rDNA fragments. Arch. Microbiol. 164, 165172.
  • [12]
    Revsbech, N.P. (1994) Analysis of microbial mats by use of electrochemical microsensors: recent advances. In: Microbial Mats (Stal, L.J. and Caumette, P., Eds.), pp. 135–147. NATO ASI Series Vol. G35, Springer, Berlin.
  • [13]
    Kuhl, M., Steuckart, C., Eickert, G., Jeroschewski, P. (1998) A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat. Microb. Ecol. 15, 201209.
  • [14]
    Revsbech, N.P., Jørgensen, B.B. (1983) Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method. Limnol. Oceanogr. 28, 749756.
  • [15]
    Buffan-Dubau, E., Pringault, O., De Wit, R. (2001) Artificial cold-adapted microbial mats cultured from Antarctic lake samples. 1. Formation and structure. Aquat. Microb. Ecol. 26, 115125.
  • [16]
    Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repeta, D., Welschmeyer, N. (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77, 183196.
  • [17]
    Albert, D.B., Martens, C.S. (1997) Determination of low-molecular-weight organic acid concentrations in seawater and porewater samples via HPLC. Mar. Chem. 56, 2737.
  • [18]
    Schippers, A., Jørgensen, B.B. (2001) Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochim. Cosmochim. Acta 65, 915922.
  • [19]
    Jeffrey, S., Mantoura, R. and Björnland, T. (1997) Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publishing, Paris.
  • [20]
    Borrego, C.M., Garcia-Gil, L.J. (1994) Separation of bacteriochlorophyll homologues from green photosynthetic bacteria by reversed-phase HPLC. Photosynth. Res. 41, 157163.
  • [21]
    Airs, R.L., Atkinson, J.E., Keely, B.J. (2001) Development and application of a high resolution chromatographic method for the analysis of complex pigment distributions. J. Chromatogr. A 917, 167177.
  • [22]
    Villanueva, J., Grimalt, J.O., De Wit, R., Keely, B.J., Maxwell, J.R. (1994) Chlorophyll and carotenoid pigments in solar saltern microbial mats. Geochim. Cosmochim. Acta 56, 47034715.
  • [23]
    Revsbech, N.P., Jørgensen, B.B., Blackburn, T.H., Cohen, Y. (1983) Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol. Oceanogr. 28, 10621074.
  • [24]
    Perry, R. and Green, D. (1984) Diffusion coefficients. In: Perry's Chemical Engineers’ Handbook, 6th Edn. (Crawford, H. and Eckes, B., Eds.), pp. 3/285–283/287. McGraw-Hill, Singapore.
  • [25]
    Pierson, B. and Castenholz, R. (1992) The family Chloroflexaceae. In: The Prokaryotes, 2nd Edn. (Balows, A., Trüper, H., Dworkin, M., Harder, W. and Schleifer, K., Eds.). Springer, New York.
  • [26]
    Schmidt, K. (1978) Biosynthesis of carotenoids. In: The Photosynthetic Bacteria (Calyton, R.K. and Sistrom, W.R., Eds.), pp. 729–750. Plenum Press, New York.
  • [27]
    Jeffrey, S.W., MacTavish, H.S., Dunlap, W.C., Vesk, M., Groenewoud, K. (1999) Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar. Ecol. Prog. Ser. 189, 3551.
  • [28]
    Garcia-Pichel, F., Mechling, M., Castenholz, R.W. (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60, 15001511.
  • [29]
    Kruschel, C., Castenholz, R.W. (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27, 5372.
  • [30]
    Pierson, B.K., Mitchell, H.K., Ruffroberts, A.L. (1993) Chloroflexus aurantiacus and ultraviolet-radiation – implications for archean shallow-water stromatolites. Orig. Life Evol. Biosph. 23, 243260.
  • [31]
    Bateson, M.M., Ward, D.M. (1988) Photoexcretion and fate of glycolate in a hot-spring cyanobacterial mat. Appl. Environ. Microbiol. 54, 17381743.
  • [32]
    Hoagland, K.D., Rosowski, J.R., Gretz, M.R., Roemer, S.C. (1993) Diatom extracellular polymeric substances – function, fine-structure, chemistry, and physiology. J. Phycol. 29, 537566.
  • [33]
    Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. N. Phytol. 131, 132.
  • [34]
    Cypionka, H. (2000) Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54, 827848.
  • [35]
    Stumm, W. and Morgan, J. (1996) Aquatic Chemistry, 3rd Edn. Wiley, New York.