• [1]
    Silverman, M.P. and Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. In: Advances in Applied Microbiology (Umbreit, W.W., Ed.), Vol. 6, pp. 153–206. Academic Press, New York.
  • [2]
    Druschel, G.K., Hamers, R.J. and Banfield, J.F. Kinetics and mechanism of oxidation of tetrathionate and trithionate at low pH by mineral surfaces and hydroxyl radicals. Geochem. Trans., in review.
  • [3]
    Nordstrom, D.K. and Southam, G. (1997) Geomicrobiology of sulfide mineral oxidation. In: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., Eds.), Vol. 35, pp. 361–390. Mineralogical Society of America, Washington, DC.
  • [4]
    Boon, M. and Heijnen, J.J. (1993) Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite, and pyrite with Thiobacillus ferrooxidans. In: Biohydrometallurgy Technologies (Torma, A.E., Wey, J.I. and Lakshmanan, V.L., Eds.), Vol. Bioleaching Processes, p. 217. The Minerals, Metals and Materials Society.
  • [5]
    Edwards, K.J., Bond, P.L., Banfield, J.F. (2000) Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals Environ. Microbiol. 2, 324332.
  • [6]
    Sand, W., Gerke, T., Hallmann, R., Shippers, A. (1997) Sulfur chemistry, biofilm, and the in(direct) attachment mechanism – a critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol. 43, 961966.
  • [7]
    Larrson, L., Gunnel, O., Holst, O., Karlsson, H.T. (1993) Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms. Biotechnol. Lett. 15, 99104.
  • [8]
    Bennett, J.C., Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces. J. Bacteriol. 134, 310317.
  • [9]
    Edwards, K.J., Hu, B., Hamers, R.J., Banfield, J.F. (2001) A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol. Ecol. 34, 197206.
  • [10]
    Fowler, T.A., Holmes, P.R., Crundwell, F.K. (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65, 29872993.
  • [11]
    Edwards, K.J., Schrenk, M.O., Hamers, R., Banfield, J.F. (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am. Mineral. 83, 14441453.
  • [12]
    Edwards, K.J., Goebel, B.M., Rodgers, T.M., Schrenk, M.O., Gihring, T.M., Cardona, M.M., Hu, B., McGuire, M.M., Hamers, R.J., Pace, N.R., Banfield, J.F. (1999) Geomicrobiology of pyrite (FeS2) dissolution: Case Study at Iron Mountain, California. Geomicrobiol. J. 16, 155179.
  • [13]
    Druschel, G.K., Hamers, R.J. and Banfield, J.F. Inorganic oxidation kinetics of elemental sulfur at low pH, in review.
  • [14]
    Singer, P.C., Stumm, W. (1970) Acidic mine drainage: the rate determining step. Science 167, 11211123.
  • [15]
    Santelli, C.M., Welch, S.A., Westrich, H.R., Banfield, J.F. (2001) The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chem. Geol. 180, 99115.
  • [16]
    Bond, P.L., Smriga, S.P., Banfield, J.F. (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 38423849.
  • [17]
    Druschel, G.K., Baker, B.J., Gihring, T. and Banfield, J.F. Acid mine drainage biogeochemistry at Iron Mountain, California, in review.
  • [18]
    Kruske, C.R., Barns, S.M., Busch, J.D. (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63, 36143621.
  • [19]
    Borneman, J., Skroch, P.W., O'Sullivan, K.M., Palus, J.A., Rumjanek, N.G., Jansen, J.L., Nienhuis, J., Triplett, E.C. (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62, 19351943.
  • [20]
    McCaig, A.E., Glover, A., Prosser, J.I. (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65, 17211730.
  • [21]
    Dojka, M.A., Hugenholtz, P., Haack, S.K., Pace, N.R. (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 38693877.
  • [22]
    Cottrell, M.T., Kirchman, D.L. (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 51165122.
  • [23]
    Orphan, V.J., Taylor, L.T., Hafenbradl, D., Delong, E.F. (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66, 700711.
  • [24]
    Reysenbach, A.L., Longnecker, K., Kirshten, J. (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 37983806.
  • [25]
    Hugenholtz, P., Pitulle, C., Hershberger, K.L., Pace, N.R. (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366376.
  • [26]
    Bowman, J.P., McCammon, S.A., Brown, M.V., Nichols, D.S., McMeekin, T.A. (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63, 30683078.
  • [27]
    Chandler, D.P., Brockman, F.J., Bailey, T.J., Fredrickson, J.K. (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microbiol. Ecol. 36, 3750.
  • [28]
    Bond, P.L., Banfield, J.F. (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microbial Ecol. 41, 149161.
  • [29]
    Goebel, B.M., Stackebrandt, E. (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60, 16141621.
  • [30]
    Johnson, D.B., Rolfe, S., Hallberg, K.B., Iversen, E. (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 3, 630637.
  • [31]
    Kelly, D.P., Wood, A.P. (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int. J. Syst. Bacteriol. 50, 511516.
  • [32]
    Dennison, F., Sen, A.M., Hallberg, K.B. and Johnson, D.B. (2001) Biological versus abiotic oxidation of iron in acid mine drainage waters: an important role for moderately acidophilic, iron-oxidising bacteria. In: Biohydrometallurgy: Fundamentals, Technology and Sustainable Development (Ciminelli, V.T. and Garcia, O. Jr., Eds.), Vol. 11A, pp. 493–501. Elsevier, Amsterdam.
  • [33]
    Kusel, K., Dorsch, T., Acker, G., Stackerbrandt, E. (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilum cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol. 65, 36333640.
  • [34]
    Baker, B.J., Hugenholtz, P., Dawson, S.C. and Banfield, J.F. A novel protist/bacteria symbiotic relationship in acid mine drainage, in preparation.
  • [35]
    Hippe, H. (2000) Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum. Int. J. Syst. Evol. Microbiol. 2, 501503.
  • [36]
    Coram, N.J., Rawlings, D.E. (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl. Environ. Microbiol. 68, 838845.
  • [37]
    Kishimoto, N., Kosako, Y., Tano, T. (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr. Microbiol. 22, 17.
  • [38]
    Lutz, M., Bond, P.L. and Banfield, J.F. (2001) Fungi in acid mine drainage communities at Iron Mountain, CA. Senior thesis. University of Wisconsin, Madison, WI.
  • [39]
    Schleper, C., Puhler, G., Kuhlmorgen, B., Zillig, W. (1995) Life at extremely low pH. Science 375, 741742.
  • [40]
    Ehrlich, H.L. (1963) Microorganisms in acid mine drainage from a copper mine. J. Bacteriol. 86, 350352.
  • [41]
    Edwards, K.J., Bond, P.L., Druschel, G.K., McGuire, M.M., Hamers, R.J., Banfield, J.F. (2000) Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem. Geol. 169, 383397.
  • [42]
    Johnson, D.B., Rang, L. (1993) Effects of acidophilic protozoa on populations of metal-oxidizing bacteria during the leaching of pyritic coal. J. Gen. Microbiol. 139, 14171423.
  • [43]
    L.A. Amaral Zettler, F. Gomez, E. Zettler, B.G. Keenan, R. Amils, M.L. Sogin (2002) Eukaryotic diversity in Spain's river of fire. Nature 417 137
  • [44]
    Gihring, T.M., Bond, P.L., Peters, S.C. and Banfield, J.F. Arsenic Resistance in the Archaeon ‘Ferroplasma acidarmanus’: New Insights into the Structure and Evolution of the ars Genes, in review.
  • [45]
    Ruepp, A., Graml, W., Santos-Martinez, M.L., Koretke, K.K., Volker, C., Mewes, H.W., Frishman, D., Stocker, S., Lupas, A.N., Baumeister, W. (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407, 508513.
  • [46]
    Hiraishi, A., Matsuzawa, Y., Kanbe, T., Wakao, N. (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int. J. Syst. Evol. Microbiol. 50, 15391546.
  • [47]
    Blake, R. and Johnson, D.B. (2000) Phylogenetic and biochemical diversity among acidophilic bacteria that respire on iron. In: Environmental Microbe–Metal Interactions (Derek, L., Ed.), pp. 53–78. ASM Press, Washington, DC.
  • [48]
    Balashova, V.V., Vedenina, I.I., Markosian, G.E., Zavarzin, G.A. (1974) Leptospirillum ferrooxidans and characteristics of its autotrophic growth. Mikrobiologiia 43, 581585.
  • [49]
    Battaglia, F., Morin, D., Garcia, J.L., Ollivier, P. (1994) Isolation and study of two strains of Leptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferous pyrite substrate. Antonie van Leeuwenhoek 66, 295302.
  • [50]
    Golovacheva, R.S., Golyshina, O.V., Karavaiko, G.I., Dorofeev, A.G., Pivovarova, T.A., Chernykn, N.A. (1992) A new iron-oxidizing bacterium, Leptospirillum-thermoferrooxidans sp. nov. Microbiology 61, 744750.
  • [51]
    Bridge, T.A.M., Johnson, D.B. (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64, 21812186.
  • [52]
    Norris, P.R., Barr, D.W. (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol. Lett. 28, 221224.
  • [53]
    Clark, D.A., Norris, P.R. (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov. mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785790.
  • [54]
    Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrateva, T.F., Moore, E.R., Abraham, W.R., Lunsdorf, H., Timmis, K.N., Yakimov, M.M., Golyshin, P.N. (2000) Ferroplasma acidiphilum gen. nov., sp. nov., and acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmacaeae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 3, 9971006.
  • [55]
    Edwards, K.J., Bond, P.L., Gihring, T.M., Banfield, J.F. (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 17961799.
  • [56]
    Huber, G., Spinnler, C., Gambacorta, A., Stetter, K.O. (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermophilic archaebacteria. Syst. Appl. Microbiol. 12, 3847.
  • [57]
    Bridge, T.A.M., Johnson, D.B. (2000) Reductive dissolution of ferric iron minerals by Acidiphilum SJH. Geomicrobiol. J. 17, 193206.
  • [58]
    Johnson, D.B., McGinness, S. (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl. Environ. Microbiol. 57, 207211.
  • [59]
    Kusel, K., Roth, U., Drake, H.L. (2002) Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ. Microbiol. 4, 414421.
  • [60]
    A.P. Harrison, Jr. (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38, 265292.
  • [61]
    Bacelar-Nicolau, P., Johnson, D.B. (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl. Environ. Microbiol. 65, 585590.
  • [62]
    Pronk, J.T., de Bruyn, J.C., Bos, P., Keunen, J.G. (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58, 22272230.
  • [63]
    Brock, T.D., Gustafson, J. (1976) Ferric iron reduction by sulfur- and iron-oxidising bacteria. Appl. Environ. Microbiol. 64, 567571.
  • [64]
    Dufresne, S., Bousquet, J., Boissinot, M., Guay, R. (1996) Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int. J. Syst. Bacteriol. 46, 10561064.
  • [65]
    Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307317.
  • [66]
    Norris, P.R., Marsh, R.M., Lindstrom, E.B. (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol. Bioeng. 8, 318329.
  • [67]
    Mason, J., Kelly, D.P. (1988) Mixotrophic and autotrophic growth of Thiobacillus acidophilus on tetrathionate. Arch. Microbiol. 149, 317323.
  • [68]
    Elbehti, A., Brasseur, G., Lemesle-Meunier, D. (2000) First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J. Bacteriol. 182, 36023606.
  • [69]
    Norris, P.R., Murrell, J.C., Hinson, D. (1995) The potential for diazotrophy in iron-oxidizing and sulfur-oxidizing acidophilic bacteria. Arch. Microbiol. 164, 294300.
  • [70]
    Smigra, S., Bond, P.L. and Banfield, J.F. (2000) Phylogeny of nifH genes associated with acid mine drainage at Iron Mountain, CA. Senior Thesis. University of Wisconsin, Madison, WI.
  • [71]
    Schrenk, M.O., Edwards, K.J., Goodman, R.M., Hamers, R.J., Banfield, J.F. (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279, 15191522.
  • [72]
    Edwards, K.J., Gihring, T.M., Banfield, J.F. (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine environment. Appl. Environ. Microbiol. 65, 36273632.
  • [73]
    Rawlings, D.E., Tributsch, H., Hansford, G.S. (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 513.
  • [74]
    Sand, W., Rohde, K., Sobotke, B., Zenneck, C. (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58, 8592.
  • [75]
    Johnson, D.B. and Roberto, F.F. (1997) Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In: Biomining: Theory, Microbes and Industrial Processes (Rawlings, D.E., Ed.), pp. 259–279. Springer, Berlin.
  • [76]
    Bond, P.L., Druschel, G.K., Banfield, J.F. (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol. 66, 49624971.
  • [77]
    Rheims, H., Rainey, F.A., Stackebrandt, E. (1996) A molecular approach to search for diversity among bacteria in the environment. J. Ind. Microbiol. 17, 159169.
  • [78]
    Atkinson, T., Gairns, S., Cowan, D.A., Danson, M.J., Hough, D.W., Johnson, D.B., Norris, P.R., Raven, N., Robinson, C., Robson, R., Sharp, R.J. (2000) A microbiological survey of Montserrat Island hydrothermal biotopes. Extremophiles 4, 305313.
  • [79]
    Yahya, A., Roberto, F.F. and Johnson, D.B. (1999) Novel mineral-oxidizing bacteria from Montsterrat (W.I.): physiological and phylogenetic characteristics. In: Biohydrometallurgy and the Environment Toward the Mining of the 21st Century Process Microbiology 9A (Amils, R. and Ballester, A., Eds.), pp. 729–740. Elsevier, Amsterdam.
  • [80]
    Peccia, J., Marchand, E.A., Silverstein, J., Hernandez, M. (2000) Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilum. Appl. Environ. Microbiol. 66, 30653072.
  • [81]
    Darland, G., Brock, T.D., Samsonoff, W., Conti, S.F. (1970) A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170, 14161418.
  • [82]
    Segerer, A., Langworthy, T.A., Stetter, K.O. (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatare Fields. Syst. Appl. Microbiol. 10, 161171.
  • [83]
    Burton, N.P., Norris, P.R. (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4, 315320.
  • [84]
    Boogerd, F.C., Vandenbeemd, C., Stoelwinder, T., Bos, P., Kuenen, J.G. (1991) Relative contributions of biological and chemical-reactions to the overall rate of pyrite oxidation at temperatures between 30°C and 70°C. Biotechnol. Bioeng. 38, 109115.
  • [85]
    Fuchs, T., Huber, H., Teiner, K., Burggraf, S., Stetter, K.O. (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeon, isolated from a uranium mine in Germany. Syst. Appl. Microbiol. 18, 560566.
  • [86]
    Das, A., Mishra, A.K. (1996) Role of Thiobacillus ferrooxidans and sulphur (sulphide)-dependent ferric-ion-reducing activity in the oxidation of sulphide minerals. Appl. Microbiol. Biotechnol. 45, 377382.
  • [87]
    Norris, P.R., Kelly, D.P. (1980) Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria. FEMS Microbiol. Lett. 4, 143146.
  • [88]
    McGuire, M.M., Edwards, K.J., Banfield, J.F., Hamers, R.J. (2001) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim. Cosmochim. Acta 65, 12431258.
  • [89]
    Hu, B., Higgins, S.R., Druschel, G.K., Banfield, J.F. and Hamers, R.J. Investigation of galena (PbS) dissolution in perchloric acid. Geochim. Cosmochim. Acta, in review.
  • [90]
    Hu, B., Banfield, J.F. and Hamers, R.J. Surface sulfur species on pyrite (100) under acidic conditions. Geochim. Cosmochim. Acta, in review.
  • [91]
    Dopson, M., Lindsrom, E.B. (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65, 3640.
  • [92]
    Béjà, O., Suzuki, M.T., Koonin, E.V., Aravind, L., Hadd, A., Nguyen, L.P., Villacorta, R., Amjadi, M., Garrigues, C., Jovanovich, S.B., Feldman, R.A., DeLong, E.F. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516529.