• [1]
    Senior, E, Lindström, B, Banat, I.M, Nedwell, D.B (1982) Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the East coast of the United Kingdom. Appl. Environ. Microbiol. 43, 987996.
  • [2]
    Skyring, G.W (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol. J. 5, 295374.
  • [3]
    Takii, S, Fukui, M (1991) Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bull. Jpn. Soc. Micro. Ecol. 6, 18.
  • [4]
    Cappenberg, T.E (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments. Antonie van Leewenhoek 40, 297306.
  • [5]
    Sørensen, J, Christensen, D, Jørgensen, B.B (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl. Environ. Microbiol. 42, 511.
  • [6]
    Balba, M.T, Nedwell, D.B (1982) Microbial metabolism of acetate, propionate and butyrate in anoxic sediments from the Colne Point saltmarsh, Essex, UK. J. Gen. Microbiol. 128, 14151422.
  • [7]
    King, G.M (1984) Utilization of hydrogen, acetate, and noncompetitive substrates. Geomicrobiol. J. 3, 275306.
  • [8]
    Purdy, K.J, Nedwell, D.B, Embley, T.M, Takii, S (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulphate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol. Ecol. 24, 221234.
  • [9]
    Winfrey, M.R, Ward, D.M (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl. Environ. Microbiol. 45, 193199.
  • [10]
    Laanbroek, H.J, Abee, T, Voogd, I.L (1982) Alcohol conversions by Desulfobulbus propionicus Lindhurst in the presence and absence of sulfate and hydrogen. Arch. Microbiol. 133, 178184.
  • [11]
    Rooney-Varga, J.N, Genthner, B.R.S, Devereux, R, Willis, S.G, Friedman, S.D, Hines, M.E (1998) Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment. Syst. Appl. Microbiol. 21, 557568.
  • [12]
    Hines, M.E, Evans, R.S, Genthner, B.R.S, Willis, S.G, Friedman, S, Rooney-Varga, J.N, Devereux, R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol. 65, 22092216.
  • [13]
    Devereux, R, Winfrey, M.R, Winfrey, J, Stahl, D.A (1996) Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol. 20, 2331.
  • [14]
    Purdy, K.J, Embley, T.M, Nedwell, D.B (2002) The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Antonie van Leewenhoek 81, 181187.
  • [15]
    Winfrey, M.R, Zeikus, J.G (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 275281.
  • [16]
    Abram, J.W, Nedwell, D.B (1978) Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediments. Arch. Microbiol. 117, 9397.
  • [17]
    Kristjansson, J.K, Schönheit, P, Thauer, R.K (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131, 278282.
  • [18]
    Lovley, D.R, Dwyer, D.F, Klug, M.J (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43, 13731379.
  • [19]
    Robinson, J.A, Tiedje, J.M (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137, 2632.
  • [20]
    Lovley, D.R, Klug, M.J (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45, 187192.
  • [21]
    Jørgensen, B.B (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22, 814832.
  • [22]
    Devereux, R, Kane, M.D, Winfrey, J, Stahl, D.A (1992) Genus- and group-specific hybridisation probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 601609.
  • [23]
    Raskin, L, Stromley, J.M, Rittmann, B.E, Stahl, D.A (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 12321240.
  • [24]
    Trimmer, M, Nedwell, D.B, Purdy, K.J (1997) Process measurement and phylogenetic analysis of the sulphate reducing bacterial communities of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, UK. FEMS Microbiol. Ecol. 24, 333342.
  • [25]
    Zepp-Falz, K.Z, Holliger, C, Grosskopf, R, Liesack, W, Nozhevnikova, A.N, Muller, B, Wehrli, B, Hahn, D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl. Environ. Microbiol. 65, 24022408.
  • [26]
    Li, J.-H, Purdy, K.J, Takii, S, Hayashi, H (1999) Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 28, 3139.
  • [27]
    Purdy, K.J, Nedwell, D.B, Embley, T.M, Takii, S (2001) Using 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in a Japanese estuary. FEMS Microbiol. Ecol. 36, 165168.
  • [28]
    Peck, H.D (1959) The ATP dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 45, 701708.
  • [29]
    Oremland, R.S, Capone, D.G (1988) Use of specific inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285383.
  • [30]
    Tsai, Y.-L, Olson, B.H (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 10701074.
  • [31]
    Nedwell, D.B, Banat, I.M (1981) Hydrogen as an electron donor for sulphate-reducing bacteria in slurries of salt marsh sediment. Microb. Ecol. 7, 305313.
  • [32]
    Zar, J.H. (1996) Biostatistical Analysis, 3rd edn. Prentice-Hall, London.
  • [33]
    Purdy, K.J, Embley, T.M, Takii, S, Nedwell, D.B (1996) Rapid extraction of DNA and rRNA from sediments using a novel hydroxyapatite spin-column method. Appl. Environ. Microbiol. 62, 39053907.
  • [34]
    Polz, M.F, Cavanaugh, C.M (1997) A simple method for quantification of uncultured microorganisms in the environment based on in vitro transcription of 16S rRNA. Appl. Environ. Microbiol. 63, 10281033.
  • [35]
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [36]
    Rosset, R, Julien, J, Monier, R (1966) Ribonucleic acid composition of bacteria as a function of growth rate. J. Mol. Biol. 18, 308320.
  • [37]
    Widdel, F. and Bak, F. (1992) Gram negative mesophilic sulfate-reducing bacteria. In: The Procaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Identification, Application (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.). Springer, New York.
  • [38]
    Hallberg, R.O., Bågander, L.E. and Engvall, A.-G. (1976) Dynamics of phosphorus, sulfur and nitrogen at the sediment-water interface. In: Environmental Biogeochemistry. Vol. 1: Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles (Nriagu, J.O., Ed.), pp. 295–308. Ann Arbor Science Publishers, Ann Arbor, MI.
  • [39]
    Boudreau, B.P, Westrich, J.T (1984) The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta 48, 25032516.
  • [40]
    Purdy, K.J. (1997) The use of 16S rRNA-targeted oligonucleotide probes to study the ecology of sulphate-reducing bacteria. Ph.D. thesis, University of Essex, Colchester, Essex.
  • [41]
    Whitman, W.B., Bowen, T.L. and Boone, D.R. (1992) The methanogenic bacteria. In: Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Identification, Application (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.), pp. 719–767. Springer, New York.
  • [42]
    Purdy, K.J, Munson, M.A, Nedwell, D.B, Embley, T.M (2002) Comparison of the molecular diversity of the methanogenic community at the freshwater and marine ends of a UK estuary. FEMS Microbiol. Ecol. 39, 1721.
  • [43]
    Andrews, J.H, Harris, R.F (1986) r-selection and K-selection and microbial ecology. Adv. Microb. Ecol. 9, 99147.
  • [44]
    Boschker, H.T.S, Nold, S.C, Wellsbury, P, Bos, D, de Graaf, W, Pel, R, Parkes, R.J, Cappenberg, T.E (1998) Direct linking of microbial populations to specific biogeochemical processes by C13-labelling of biomarkers. Nature 392, 801805.
  • [45]
    Boschker, H.T.S, de Graaf, W, Koster, M, Meyer-Reil, L.A, Cappenberg, T.E (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol. 35, 97103.
  • [46]
    Summons, R.E, Franzmann, P.D, Nichols, P.D (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org. Geochem. 28, 78.
  • [47]
    Munson, M.A, Nedwell, D.B, Embley, T.M (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63, 47294733.
  • [48]
    Ogilvie, B, Nedwell, D.B, Harrison, R.M, Robinson, A, Sage, A (1997) High nitrate, muddy estuaries as nitrogen sinks: The nitrogen budget of the River Colne estuary (United Kingdom). Mar. Ecol. Prog. Series 150, 217228.
  • [49]
    Seitz, H.-J, Cypionka, H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146, 6367.
  • [50]
    Jetten, M.S.M, Stams, A.J.M, Zehnder, A.J.B (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73, 339344.
  • [51]
    Conrad, R, Phelps, T.J, Zeikus, J.G (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage-sludge and lake-sediments. Appl. Environ. Microbiol. 50, 595601.
  • [52]
    Egli, T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol. 14, 305386.
  • [53]
    Amann, R.I, Binder, B.J, Olson, R.J, Chisholm, R, Devereux, R, Stahl, D.A (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl. Environ. Microbiol. 56, 16191625.
  • [54]
    Amann, R.I, Krumholz, L, Stahl, D.A (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J. Bacteriol. 172, 762770.