• [1]
    Susarla, S., Medina, V.F., McCutcheon, S.C. (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng. 18, 647658.
  • [2]
    Aprill, W., Sims, R.C. (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20, 253265.
  • [3]
    Reilley, K.A., Banks, M.K., Schwab, A.P. (1996) Dissipation of polyaromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25, 212219.
  • [4]
    Banks, M.K., Lee, E., Schwab, A.P. (1999) Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue. J. Environ. Qual. 28, 294298.
  • [5]
    Schwab, A. and Banks, M.K. (1994) Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: Bioremediation through Rhizosphere Technology (Anderson, T.A. and Coats, J.R., Eds.), pp. 132–141. American Chemical Society, Washington, DC.
  • [6]
    Bauer, W.D. (1981) Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32, 207449.
  • [7]
    Bastiaens, L., Springael, D., Wattiau, P., Harms, H., DeWachter, R., Verachtert, H., Diels, L. (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol. 66, 18341843.
  • [8]
    Ortega-Calvo, J.J., Alexander, M. (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl. Environ. Microbiol. 60, 26432646.
  • [9]
    García-Junco, M., De Olmedo, E., Ortega-Calvo, J.J. (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ. Microbiol. 3, 561569.
  • [10]
    Resina-Pelfort, O., García-Junco, M., Ortega-Calvo, J.J., Comas-Riu, J., Vives-Rego, J. (2003) Flow cytometry discrimination between bacteria and clay humic acid particles during growth-linked biodegradation of phenanthrene by Pseudomonas aeruginosa 19SJ. FEMS Microbiol. Ecol. 43, 5561.
  • [11]
    Liste, H.H., Alexander, M. (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40, 1114.
  • [12]
    Manson, M.D. (2001) Bacterial motility and chemotaxis. Adv. Microb. Physiol. 33, 277346.
  • [13]
    Caetano-Anollés, G., Wall, L.G., De Micheli, A.T., Macchi, E.M., Bauer, W.D., Favelukes, G. (1988) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol. 86, 12281235.
  • [14]
    Hawes, M.C., Smith, L.Y. (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J. Bacteriol. 171, 56685671.
  • [15]
    Witt, M.E., Dybas, M.J., Worden, R.M., Criddle, C.S. (1999) Motility-enhanced bioremediation of carbon tetrachloride-contaminated aquifer sediments. Environ. Sci. Technol. 33, 29582964.
  • [16]
    Marx, R.B., Aitken, M.D. (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ. Sci. Technol. 34, 33793383.
  • [17]
    Grimm, A.C., Harwood, C.S. (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol. 63, 41114115.
  • [18]
    Parales, R.E., Ditty, J.L., Harwood, C.S. (2001) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66, 40984104.
  • [19]
    Hawkins, A.C., Harwood, C.S. (2002) Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol. 68, 968972.
  • [20]
    Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994) Bergey's Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, MD.
  • [21]
    Sims, R.C., Overcash, M.R. (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev. 88, 168.
  • [22]
    Reitz, M., Rudolph, K., Schroder, I., Hoffmann-Hergarten, S., Hallmann, J., Sikora, R.A. (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66, 35153518.
  • [23]
    Norman, R.S., Frontera-Suau, R., Morris, P.J. (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl. Environ. Microbiol. 68, 50965103.
  • [24]
    Adler, J. (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 98, 7791.
  • [25]
    Parales, R.E., Harwood, C.S. (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5, 266273.
  • [26]
    Miya, R.K., Firestone, M.K. (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J. Environ. Qual. 29, 584592.
  • [27]
    Binet, P., Portal, J.M., Leyval, C. (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol. Biochem. 32, 20112017.
  • [28]
    Bosma, T.N.P., Middeldorp, P.J.M., Schraa, G., Zehnder, A.J.B. (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ. Sci. Technol. 31, 248252.
  • [29]
    Wick, L.Y., Colangelo, T., Harms, H. (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ. Sci. Technol. 35, 354361.
  • [30]
    Alexandre, G., Zhulin, I.B. (2001) More than one way to sense chemicals. J. Bacteriol. 183, 46814686.