• [1]
    Stal, L.J. (1995) Tansley review no. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131, 132.
  • [2]
    Sinha, R.P., Häder, D.-P. (1996) Photobiology and ecophysiology of rice field cyanobacteria. Photochem. Photobiol. 64, 887896.
  • [3]
    Herrero, A., Muro-Pastor, A.M., Flores, E. (2001) Nitrogen control in cyanobacteria. J. Bacteriol. 183, 411425.
  • [4]
    Zehr, J.P., Carpenter, E.J., Villareal, T.A. (2000) New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans. Trends Microbiol. 8, 6873.
  • [5]
    Raven, P.H., Evert, R.F. and Eichhorn, S.E. (1992) Biology of Plants. Worth, New York.
  • [6]
    Flores, E. and Herrero, A. (1994) Assimilatory nitrogen metabolism and its regulation. In: The Molecular Biology of Cyanobacteria (Bryant, D.A., Ed.), p. 487–517. Kluwer Academic, Dordrecht.
  • [7]
    Capone, D.G., 1988. Benthic nitrogen fixation. In: Nitrogen Cycling in Coastal Marine Enviroments (Blackburn, T.H. and Sorensen, J., Eds.). John Wiley and Sons, New York.
  • [8]
    Zehr, J.P., Ward, B.B. (2002) Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Appl. Environ. Microbiol. 68, 10151024.
  • [9]
    Gallon, J.R., Ul-Haque, M.I., Chaplin, A.E. (1978) Fluoroacetate metabolism in Gloeocapsa sp. LB 795 and its relationship to acetylene reduction (nitrogen fixation). J. Gen. Microbiol. 106, 329336.
  • [10]
    Maryan, P.S., Eady, R.R., Chaplin, A.E., Gallon, J.R. (1986) Nitrogen fixation by Gloeothece sp. PCC 6909: Respiration and not photosynthesis supports nitrogenase activity in the light. J. Gen. Microbiol. 132, 789796.
  • [11]
    Gallon, J.R., Hashem, M.A., Chaplin, A.E. (1991) Nitrogen fixation by Oscillatoria spp. under autotrophic and photoheterotrophic conditions. J. Gen. Microbiol. 137, 3139.
  • [12]
    Reade, J.P.H., Dougherty, L.J., Rogers, L.J., Gallon, J.R. (1999) Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152. Microbiology 145, 17491758.
  • [13]
    Evans, A.M., Gallon, J.R., Jones, A., Staal, M., Stal, L.J., Villbrandt, M., Walton, T.J. (2000) Nitrogen fixation by Baltic cyanobacteria is adapted to the prevailing photon flux density. New Phytol. 147, 285297.
  • [14]
    Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. (1979) Generic assigments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 161.
  • [15]
    Mackinney, J. (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315322.
  • [16]
    Jensen, A. (1978). Chlorophylls and carotenoids. In: Handbook of Phycological Methods. Physiological and Biochemical Methods (Hellebust, J.A. and Craigie, J.S., Eds.), pp. 59–70. Cambridge University Press, Cambridge.
  • [17]
    Siegelman, H.W. and Kycia, J.H. (1978) Algal biliproteins. In: Handbook of Phycological Methods. Physiological and Biochemical Methods (Hellebust, J.A. and Craigie, J.S., Eds.), pp. 71–79. Cambridge University Press, Cambridge.
  • [18]
    Folch, J., Lees, M., Sloan-Stanley, G.H. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226, 497509.
  • [19]
    Miller, L. and Berger, T. (1985) Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett Packard, Gas Chromatography, Application note 228-41, pp. 1–8.
  • [20]
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265275.
  • [21]
    Green, M.J., Hill, H.A.O. (1984) Chemistry of dioxygen. Methods Enzymol. 105, 322.
  • [22]
    Stewart, W.D.P., Fitzgerald, G.P., Burris, R.H. (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natl. Acad. Sci. USA 58, 20712078.
  • [23]
    Shapiro, B.M., Stadtman, E.R. (1970) Glutamine synthetase (Escherichia coli). Methods Enzymol. XVIIA, 910922.
  • [24]
    Herrero, A., Flores, E., Guerrero, M.G. (1981) Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119 and Nostoc sp. strain 6719. J. Bacteriol. 145, 175180.
  • [25]
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • [26]
    Wendel, J.F. and Weeden, N.F. (1989) Visualization and interpretation of plant isozymes. In: Isozymes in Plant Biology (Soltis, D.F. and Soltis, P.S., Eds.), pp. 5–45. Chapman and Hall, London.
  • [27]
    Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276287.
  • [28]
    Chadd, H.E., Newman, J., Mann, N.H., Carr, N.G. (1996) Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. FEMS Microbiol. Lett. 138, 161165.
  • [29]
    Fragerstedt, K., Saranpaa, P., Piispanen, R. (1998) Peroxidase activity, isoenzyme and histochemical localization, in sap wood and heart wood of Scots pine (Pinus sylvestris L.). J. Forest Res. 3, 4347.
  • [30]
    Giani, D., Krumbein, W.E. (1986) Growth characteristics of non-heterocystous cyanobacterium Plectonema boryanum with N2 as nitrogen source. Arch. Microbiol. 145, 259265.
  • [31]
    Prosperi, C., Boluda, L., Luna, C., Fernandez-Valiente, E. (1992) Environmental factors affecting in vitro nitrogenase activity of cyanobacteria isolated from rice-fields. J. Appl. Phycol. 4, 197204.
  • [32]
    Alahari, A., Apte, S.K. (1998) Pleiotropic effects of potassium defiency in a heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Microbiology 144, 15571563.
  • [33]
    Stal, L.J., Walsby, A.E. (1998) The daily integral of nitrogen fixation by planktonic cyanobacteria in the Baltic Sea. New Phytol. 139, 665671.
  • [34]
    Cheng, J., Hipkin, C.R., Gallon, J.R. (1999) Effects of inorganic nitrogen compounds on the activity and synthesis of nitrogenase in Gloeothece (Nägeli) sp. ATCC 27152. New Phytol. 141, 6170.
  • [35]
    Postius, C., Neuschaefer-Rube, O., Haid, V., Böger, P. (2001) N2-fixation and complementary chromatic adaptation in non-heterocystous cyanobacteria from Lake Constance. FEMS Microbiol. Ecol. 37, 117125.
  • [36]
    Richardson, L.L., Kuta, K.G. (2003) Ecological physiology of the black band disease cyanobacterium Phormidium corallyticum. FEMS Microbiol. Ecol. 43, 287298.
  • [37]
    S.E. Stevens, Jr.Balkwill, D.L., Paone, D.A.M. (1981) The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch. Microbiol. 130, 204212.
  • [38]
    Allen, M.M., Hutchison, F. (1980) Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308. Arch. Microbiol. 128, 17.
  • [39]
    Wanner, G., Henkelmann, G., Schmidt, A., Köst, K.-P. (1986) Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301. An ultrastructural, morphometrical and biochemical comparison. Z. Naturforsch. 41c, 741750.
  • [40]
    Piorreck, M., Baasch, K.-H., Pohl, P. (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23, 207216.
  • [41]
    Chen, F., Johns, R. (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3, 203209.
  • [42]
    Smith, L.A., Norman, H.A., Cho, S.H., G.A. Thompson, Jr. (1985) Isolation and quantitative analysis of phosphatidyl-glycerol and glycolipid molecular species using reversed phase HPLC with flame ionization detector. J. Chromatogr. 349, 291299.
  • [43]
    Floreto, E.A.T., Teshima, S., Ishikawa, M. (1996) Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman (Cholorophyta). Bot. Mar. 39, 6974.
  • [44]
    Bonin, D.J., Antia, N.J., Pelaez-Hudlet, J. (1982) Influence of temperature and light intensity on the utilization of glycine as nitrogen source for phototrophic growth of a marine unicellular cyanophyte (Cyanobacterium). Bot. Mar. XXV, 493499.
  • [45]
    Shehawy, R.M. and Kleiner, D. (2001) Nitrogen limitation. In: Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanisms (Rai, L.C. and Gaur, J.P., Eds.), pp. 45–64. Springer-Verlag, Berlin.
  • [46]
    Prabaharan, D., Sumathi, M., Subramanian, G. (1994) Ability to use ampicilllin as a nitrogen source by the marine cyanobacterium Phormidium valderianum BDU 30501. Curr. Microbiol. 28, 315320.
  • [47]
    Stewart, W.D.P., Haystead, A. and Dharmawardene, M.W.N. (1975) Nitrogen Assimilation and Metabolism in Blue-green Algae. Cambridge University Press, Cambridge.
  • [48]
    Allen, M.M., Smith, A.J. (1969) Nitrogen chlorosis in blue-green algae. Arch. Mikrobiol. 69, 114120.
  • [49]
    Gordillo, F.J.L., Jiménez, C., Figueroa, F.L., Niell, F.X. (1999) Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). J. Appl. Phycol. 10, 461469.
  • [50]
    Montesinos, M.L., Muro-Pastor, A.M., Herrero, A., Flores, E. (1998) Ammonium/methylammonium permeases of a cyanobacterium. J. Biol. Chem. 273, 3146331470.
  • [51]
    Alaoui, S.E., Diez, J., Humanes, L., Toribio, F., Partensky, F., García-Fernández, J.M. (2001) In vivo regulation of glutamine synthetase activity in the marine chlorophyll b-containing cyanobacterium Prochlorococcus sp. strain PCC 9511 (Oxyphotobacteria). Appl. Environ. Microbiol. 67, 22022207.
  • [52]
    Schwarz, R., Grossman, A.R. (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc. Natl. Acad. Sci. USA 95, 11081113.
  • [53]
    Sanders, B. (1994) Stress proteins as molecular chaperones: Implications for toxicology.
  • [54]
    Burke, J.J., Gamble, P.E., Hatfield, J.L., Quisenberry, J.E. (1985) Plant morphological and biochemical responses to field water deficits 1. Responses of glutathione reductase activity and paraquat sensitivity. Plant Physiol. 79, 415419.
  • [55]
    Allen, M.M., Law, A., Evans, E.H. (1990) Control of photosynthesis during nitrogen depletion and recovery in a non-nitrogen-fixing cyanobacterium. Arch. Microbiol. 153, 428431.
  • [56]
    Tichy, M., Vermaas, W. (1999) In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J. Bacteriol. 181, 18751882.
  • [57]
    Herbert, S.K., Samson, G., Fork, D.C., Laudenbach, D.E. (1992) Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc. Natl. Acad. Sci. USA 89, 87168720.
  • [58]
    Billi, D., Caiola, M.G. (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol. 133, 563571.
  • [59]
    Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P. (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654657.
  • [60]
    Morita, S., Kaminaka, H., Masumura, T., Tanaka, K. (1999) Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress signaling. Plant Cell Physiol. 40, 417422.
  • [61]
    Ott, T., Fritz, E., Polle, A., Schützendübel, A. (2002) Characterization of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol. Ecol. 42, 359366.
  • [62]
    Halliwell, B., Cutteridge, J.M.C. (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501514.