• [1]
    Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York.
  • [2]
    Lovley, D.R, Coates, J.D, Blunt-Harris, E.L, Phillips, E.J.P, Woodward, J.C (1996) Humic substances as electron acceptors for microbial respiration. Nature 382, 445448.
  • [3]
    Coates, J.D, Ellis, D.J, Blunt-Harris, E.L, Gaw, C.V, Roden, E.E, Lovley, D.R (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64, 15041509.
  • [4]
    Scott, D.T, McKnight, D.M, Blunt-Harris, E.L, Kolesar, S.E, Lovley, D.R (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 29842989.
  • [5]
    Nurmi, J.T, Tratnyek, P.G (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environ. Sci. Technol. 36, 617624.
  • [6]
    Struyk, Z, Sposito, G (2001) Redox properties of standard humic acids. Geoderma 102, 329346.
  • [7]
    Chen, J, Gu, B, Royer, R.A, Burgos, W.D (2003) The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci. Total Environ. 307, 167178.
  • [8]
    Lovley, D.R, Fraga, J.L, Blunt-Harris, E.L, Hayes, L.A, Phillips, E.J.P, Coates, J.D (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26, 152157.
  • [9]
    Benz, M, Schink, B, Brune, A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 64, 45074512.
  • [10]
    Lovley, D.R, Kashefi, K, Vargas, M, Tor, J.M, Blunt-Harris, E.L (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem. Geol. 169, 289298.
  • [11]
    Cervantes, F.J, de Bok, F.A.M, Duong-Dac, T, Stams, A.J.M, Lettinga, G, Field, J.A (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4, 5157.
  • [12]
    Szilágyi, M (1971) Reduction of Fe3+ ion by humic acid preparations. Soil Sci. 111, 233235.
  • [13]
    Sunda, W.G, Kieber, D.J (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substances. Nature 367, 6264.
  • [14]
    Nevin, K.P, Lovley, D.R (2000) Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34, 24722478.
  • [15]
    Widdel, F. and Bak, F. (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The Prokaryotes, 2nd edn. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.), pp. 3352–3378. Springer-Verlag, New York.
  • [16]
    Tschech, A, Pfennig, N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163167.
  • [17]
    Widdel, F, Pfennig, N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395400.
  • [18]
    Schwertmann, U. and Cornell, R.M. (2000) Iron Oxides in the Laboratory. Preparation and Characterization. John Wiley and Sons, Weinheim.
  • [19]
    Swift, R.S. (1996) Organic matter characterization. In: Soil Science Society of America Book Series 5, Methods of Soil Analysis. Part 3. Chemical Methods (Sparks, D.L., Ed.), pp. 1018–1020. Soil Science Society of America, Madison, WI.
  • [20]
    Hauck, S, Benz, M, Brune, A, Schink, B (2001) Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiol. Ecol. 37, 127134.
  • [21]
    Cochran, W.G (1950) Estimation of bacterial densities by means of the ‘most probable number’. Biometrics 6, 105116.
  • [22]
    Stookey, L.L (1970) Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 42, 779781.
  • [23]
    Kappler, A, Ji, R, Schink, B, Brune, A (2001) Dynamics in size-class distribution and composition of humic substances in profundal sediments of Lake Constance. Org. Geochem. 32, 310.
  • [24]
    Matthiessen, A (1995) Determining the redox capacity of humic substances as a function of pH. Vom Wasser 84, 229235.
  • [25]
    Revsbech, N.P (1989) An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34, 472476.
  • [26]
    Brune, A, Emerson, D, Breznak, J.A (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61, 26812687.
  • [27]
    Royer, R.A, Burgos, W.D, Fisher, A.S, Jeon, B.-H, Unz, R.F, Dempsey, B.A (2002) Enhancement of hematite bioreduction by natural organic matter. Environ. Sci. Technol. 36, 28972904.
  • [28]
    Thamdrup, B, Fossing, H, Jørgensen, B.B (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58, 51155129.
  • [29]
    Wetzel, R.G. (1983) Limnology. Saunders College Publishing, San Francisco, CA.
  • [30]
    Lovley, D.R (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259287.
  • [31]
    Urrutia, M.M, Roden, E.E, Zachara, J.M (1999) Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 40224028.
  • [32]
    Kappler, A, Haderlein, S.B (2003) Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ. Sci. Technol. 37, 27072713.
  • [33]
    Straub, K.L, Benz, M, Schink, B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 34, 181186.
  • [34]
    Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides – Structure, Properties, Reactions, Occurrence and Uses. VCH, Weinheim.
  • [35]
    Hanert, H.H. (1992) Genus Gallionella. In: The Prokaryotes, 2nd edn. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.-H., Pfennig, N. and Holt, J.G., Eds.), pp. 4083–4088. Springer-Verlag, New York.
  • [36]
    Mulder, E.D. and Deinema, M.H. (1992) The sheathed bacteria. In: The Prokaryotes, 2nd edn. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.-H., Pfennig, N. and Holt, J.G., Eds.), pp. 2612–2624. Springer-Verlag, New York.
  • [37]
    Coates, J.D, Chakraborty, R, O'Connor, S.M, Schmidt, C, Thieme, J (2001) The geochemical effects of microbial humic substances reduction. Acta Hydrochim. Hydrobiol. 28, 420427.
  • [38]
    Curtis, P.G, Reinhard, M (1994) Reductive dehalogenation of hexachlorethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environ. Sci. Technol. 28, 23932401.
  • [39]
    Dunnivant, F.M, Schwarzenbach, R.P, Macalady, D.L (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26, 21332141.