• [1]
    Macnab, R.M. (1996) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Ed.) 2nd edn., pp. 123–145. ASM, Washington, DC.
  • [2]
    Namba, K., Vonderviszt, F. (1997) Molecular architecture of the bacterial flagellum. Quart. Rev. Biophys. 30, 165.
  • [3]
    Auvray, F., Thomas, J., Fraser, G.M., Hughes, C. (2001) Flagellin polymerisation control by a cytosolic export chaperone. J. Mol. Biol. 308, 221229.
  • [4]
    Yokoseki, T., Kutsukake, K., Ohnishi, K., Iino, T. (1995) Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141, 17151722.
  • [5]
    Trachtenberg, S., de Rosier, D.J. (1988) A molecular switch: subunit rotations involved in the right-handed to left-handed transition of Salmonella typhimurium flagellar filaments. J. Mol. Biol. 202, 787808.
  • [6]
    Ruiz, T., Francis, N., Morgan, D.G., DeRosier, D.J. (1993) Size of the export channel in the flagellar filament of Salmonella typhimurium. Ultramicroscopy 48, 417425.
  • [7]
    Namba, K., Yamashita, I., Vonderviszt, F. (1989) Structure of the core and central channel of bacterial flagella. Nature 342, 648654.
  • [8]
    Vonderviszt, F., Kanto, S., Aizawa, S.-I., Namba, K. (1989) Terminal regions of flagellin are disordered in solution. J. Mol. Biol. 209, 127133.
  • [9]
    Samatey, F.A., Imada, K., Vonderviszt, F., Shirakihara, Y., Namba, K. (2000) Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals. J. Struct. Biol. 132, 106111.
  • [10]
    Samatey, F.A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M., Namba, K. (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331337.
  • [11]
    Sambrook, J., Frisch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • [12]
    Studier, F.W., Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113130.
  • [13]
    Miroux, B., Walker, J.E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289298.
  • [14]
    Horton, R.M., Cai, Z.L., Ho, S.N., Pease, L.R. (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528535.
  • [15]
    Ozin, A.J., Samford, C.S., Henriques, A.O., Moran, C.P. (2001) SpoVID guides SafA to the spore coat in Bacillus subtilis. J. Bacteriol. 183, 30413049.
  • [16]
    Minamino, T., Macnab, R.M. (2000) FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 37, 14941503.
  • [17]
    Fields, S., Song, O. (1989) A novel genetic system to detect protein–protein interactions. Nature 6230, 245246.
  • [18]
    Fraser, G.M., Bennett, J.C., Hughes, C. (1999) Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol. 32, 569580.
  • [19]
    Bennett, J.C., Thomas, J., Fraser, G.M., Hughes, C. (2001) Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol. Microbiol. 39, 781791.
  • [20]
    Kuwajima, G. (1988) Construction of a minimum-size functional flagellin of Escherichia coli. J. Bacteriol. 170, 33053309.
  • [21]
    Gill, P.R., Agabian, N. (1983) The nucleotide sequence of the Mr = 28, 500 flagellin gene of Caulobacter crescentus. J. Biol. Chem. 258, 73957401.
  • [22]
    Weissborn, A., Steinmann, H.M., Shapiro, L. (1982) Characterization of the proteins of the Caulobacter crescentus flagellar filament. Peptide analysis and filament organization. J. Biol. Chem. 257, 20662074.
  • [23]
    Kuwajima, G., Kawagishi, I., Homma, M., Asaka, J., Kondo, E., Macnab, R.M. (1989) Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. Proc. Natl. Acad. Sci. USA 13, 49534957.
  • [24]
    Stebbins, C.E., Galan, J.E. (2001) Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 6859, 7781.
  • [25]
    Luo, Y., Bertero, M.G., Frey, E.A., Pfuetzner, R.A., Wenk, M.R., Creagh, L., Marcus, S.L., Lim, D., Sicheri, F., Kay, C., Haynes, C., Finlay, B.B., Strynadka, N.C. (2001) Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 12, 10311036.
  • [26]
    Birtalan, S., Ghosh, P. (2001) Structure of the Yersinia type III secretory system chaperone SycE. Nat. Struct. Biol. 11, 974978.
  • [27]
    Birtalan, S.C., Phillips, R.M., Ghosh, P. (2002) Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell. 9, 971980.