• [1]
    Fraústo da Silva, J.J.R. and Williams, R.J.P. (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd edn. Clarenden Press, Oxford.
  • [2]
    Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., O'Halloran, T.V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805808.
  • [3]
    Puig, S., Thiele, D.J. (2002) Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6, 171180.
  • [4]
    O'Halloran, T.V., Culotta, V.C. (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 2505725060.
  • [5]
    Harrison, M.D., Jones, C.E., Solioz, M., Dameron, C.T. (2000) Intracellular copper routing, the role of copper metallochaperones. Trends Biochem. Sci. 25, 2932.
  • [6]
    Tottey, S., Rondet, S.A.M., Borrelly, G.P.M., Robinson, P.J., Rich, P.R., Robinson, N.J. (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer and alternative sites for copper acquisition. J. Biol. Chem. 277, 54905497.
  • [7]
    Odermatt, A., Solioz, M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. 270, 43394354.
  • [8]
    Cobine, P., Wickramasinghe, W.A., Harrison, M.D., Weberb, T., Solioz, M., Dameron, C.T. (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 445, 2730.
  • [9]
    Odermatt, A., Suter, H., Krapf, R., Solioz, M. (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 1277512779.
  • [10]
    Multhaup, G., Strausak, D., Bissig, K.-D., Solioz, M. (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem. Biophys. Res. Commun. 288, 172177.
  • [11]
    Banci, L., Bertini, I., Del Conte, R., Markey, J., Ruiz-Duenas, F.J. (2001) Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40, 1566015668.
  • [12]
    Wimmer, R., Herrmann, T., Solioz, M., Wuthrich, K. (1999) NMR structure and metal interactions of the CopZ copper chaperone. J. Biol. Chem. 274, 2259722603.
  • [13]
    Rosenzweig, A.C., Huffman, D.L., Hou, M.Y., Wernimont, A.K., Pufahl, R.A., O'Halloran, T.V. (1995) Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Struct. Fold Des. 7, 605617.
  • [14]
    Arnesano, F., Banci, L., Bertini, I., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40, 15281539.
  • [15]
    Banci, L., Bertini, I., Ciofi-Baffoni, S., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J. Biol. Chem. 276, 84158426.
  • [16]
    Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D.L., O'Halloran, T.V. (2001) Characterization of the binding interface between the copper metallochaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J. Biol. Chem. 276, 4136541376.
  • [17]
    Banci, L., Bertini, I., Ciofi-Baffoni, S., D'Onofrio, M., Gonnelli, L., Marhuenda-Egea, C.F., Ruiz-Dueñas, F.J. (2002) Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J. Mol. Biol. 317, 415429.
  • [18]
    Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V. (1998) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249256.
  • [19]
    Erlendsson, L.S., Hederstedt, L. (2002) Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J. Bacteriol. 84, 14231429.
  • [20]
    Silver, S., Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753789.
  • [21]
    Gatti, D., Mitra, B., Rosen, B.P. (2000) Escherichia coli soft metal ion-translocating ATPases. J. Biol. Chem. 275, 3400934012.
  • [22]
    Nucifora, G., Chu, L., Misra, T.K., Silver, S. (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86, 35443548.
  • [23]
    Beard, S.J., Hashim, R., Membrillo-Hernandez, J., Hughes, M.N., Poole, R.K. (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25, 883891.
  • [24]
    Rensing, C., Mitra, B., Rosen, B.P. (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94, 1432614331.
  • [25]
    Thelwell, C., Robinson, N.J., Turner-Cavet, J.S. (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95, 1072810733.
  • [26]
    Rutherford, J.C., Cavet, J.S., Robinson, N.J. (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 2582725832.
  • [27]
    Gupta, A., Matsui, K., Lo, J.F., Silver, S. (1999) Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5, 183188.
  • [28]
    Rensing, C., Fan, B., Sharma, R., Mitra, B., Rosen, B.P. (2000) CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652656.
  • [29]
    Gaballa, A. and Helmann, J. (2002) Bacillus subtilis CPx-type ATPases: characterisation of Cd, Zn, Co and Cu efflux systems. Biometals, in press.
  • [30]
    Solieva, I.M., Entian, K.-D. (2002) Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd2+ ion resistance. FEMS Microbiol. Lett. 208, 105109.
  • [31]
    Vagner, V., Dervyn, E., Ehrlich, S.D. (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 30973104.
  • [32]
    Fortnagel, P., Freese, E. (1968) Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J. Bacteriol. 95, 14311438.
  • [33]
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Springs Harbor Laboratory, Cold Springs Harbor, NY.
  • [34]
    Bron, S. (1990) Plasmids. In: Molecular Biological Methods for Bacillus (Harwood, C.R. and Cutting, S.M., Eds.), pp. 75–174. John Wiley and Sons Ltd., Chichester.
  • [35]
    Guérout-Fleury, A.-M., Shazand, K., Frandsen, N., Stragier, P. Gene. 167, (1995) 335–336
  • [36]
    Morby, A.P., Turner, J.S., Huckle, J.W., Robinson, N.J. (1993) SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res. 21, 921925.
  • [37]
    Le Brun, N.E., Bengtsson, J., Hederstedt, L. (2000) Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36, 638650.
  • [38]
    Hederstedt, L. (1986) Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 126, 399414.
  • [39]
    van der Oost, J., von Wachenfeldt, C., Hederstedt, L., Saraste, M. (1991) Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol. Microbiol. 5, 20632072.
  • [40]
    Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 7685.
  • [41]
    Paulsen, I.T., Saier, M.H. Jr. (1997) A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156, 99103.
  • [42]
    Solioz, M., Vulpe, C. (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biol. Sci. 21, 237241.
  • [43]
    Perkins, J.B., Youngman, J.C. (1986) Construction and properties of Tn917-lacZ, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83, 140144.
  • [44]
    Kihlken, M.A., Leech, A.P., Le Brun, N.E. (2002) Copper-mediated dimerisation of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem. J. 368, 729739.
  • [45]
    Tottey, S., Rich, P.R., Rondett, S.A.M., Robinson, N.J. (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC 6803. J. Biol. Chem. 276, 1999920004.
  • [46]
    Glerum, D.M., Shtanko, A., Tzagoloff, A. (1996) SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J. Biol. Chem. 271, 2053120535.
  • [47]
    Nittis, T., George, G.N., Winge, D.R. (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J. Biol. Chem. 276, 4252042526.
  • [48]
    Mattatall, N.R., Jazaira, J., Hill, B.C. (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J. Biol. Chem. 275, 2880228809.