SEARCH

SEARCH BY CITATION

References

  • [1]
    Steenhoudt, O., Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487506.
  • [2]
    Elmerich, C. (1986) Azospirillum. In: Nitrogen Fixation, Vol. 4, Molecular Biology (Puhler, A. and Broughton, W.J., Eds.), pp. 106–126. Clarendon Press, Oxford.
  • [3]
    Michiels, K., De Troch, P., Onyeocha, I., Van Gool, A., Elmerich, C., Vanderleyden, J. (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid 21, 142146.
  • [4]
    Vieille, C., Elmerich, C. (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti NodPQ. Mol. Plant-Microbe Interact. 3, 389400.
  • [5]
    Croes, C., Van Bastelaere, E., DeClercq, E., Eyers, M., Vanderleyden, J., Michiels, K. (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26, 8393.
  • [6]
    Michiels, K.W., Vanderleyden, J., Van Gool, A., Signer, E.R. (1988) Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti ExoB and ExoC mutations. J. Bacteriol. 170, 54015404.
  • [7]
    Vande Broek, A., Okon, Y., Vanderleyden, J. (2000) Isolation and sequence analysis of RepA from the incurable 90-MDa plasmid of Azospirillum brasilense. DNA Sequence 11, 101107.
  • [8]
    del Solar, G., Giraldo, R., Ruiz-Echevarria, J., Espinosa, M., Diaz-orejas, R. (1998) Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434464.
  • [9]
    Salzberg, S.L., Delcher, A.L., Kasif, S., White, O. (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544548.
  • [10]
    Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., Koonin, E.V. (2001) The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 2228.
  • [11]
    Lowe, T.M., Eddy, S.R. (1997) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955964.
  • [12]
    Enright, A.J., Van Dongen, S., Ouzounis, C.A. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 15751584.
  • [13]
    Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L. (1999) Improved microbial gene identification with Glimmer. Nucleic Acids Res. 27, 46364641.
  • [14]
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403410.
  • [15]
    Mahillon, J., Léonard, C., Chandler, M. (1999) IS elements as constituents of bacterial genomes. Res. Microbiol. 150, 675687.
  • [16]
    Casjens, S. (2003) Prophages and bacterial genomics: What have we learned so far. Mol. Microbiol. 49, 277300.
  • [17]
    Becker, A., Ruberg, S., Kuster, H., Roxlau, A.A., Keller, M., Ivashina, T., Cheng, H.P., Walker, G.C., Puhler, A. (1997) The 32-kilobase Exp cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J. Bacteriol. 179, 13751384.
  • [18]
    Gao, M., D'Haeze, W., De Rycke, R., Wolucka, B., Holsters, M. (2001) Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Mol. Plant-Microbe Interact. 14 866.
  • [19]
    Carlson, R.W., Reuhs, B.L., Forsberg, L.S. and Kannenberg, E.L. (1999) Rhizobial cell surface carbohydrates: their structures, biosynthesis, and functions. In: Genetics of Bacterial Polysaccharides (Goldberg, J.B., Ed.), pp. 53–90. CRC Press, Boca Raton, FL.
  • [20]
    Cangelosi, G.A., Hung, L., Puvanesarajah, V., Stacey, G., Ozga, D.A., Leigh, J.A., Nester, E.W. (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J. Bacteriol. 169, 20862091.
  • [21]
    Pueppke, S.G., Benny, U.K. (1984) Adsorption of tumorigenic Agrobacterium tumefaciens cells to susceptible potato tuber tissues. Can. J. Microbiol. 30, 10301037.
  • [22]
    Matthysse, A.G. (1986) Initial interactions of Agrobacterium tumefaciens with plant host cells. Crit. Rev. Microbiol. 13, 281307.
  • [23]
    Newman, M.A., von Koepenack-Lahaye, E., Parr, A., Daniels, M.J., Dow, J.M. (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J. 29, 487495.
  • [24]
    Katzy, E.I., Matora, L.Y., Serebrennikova, B., Scheludko, A.V. (1998) Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in the production of lipopolysaccharides. Plasmid 40, 7383.
  • [25]
    Scheludko, A.V., Katzy, E.I., Ostudin, N.A., Gringauz, O.K., Panasenko, V.I. (1998) Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella. Mol. Gen. Microbiol. Virusol. 4, 3337.
  • [26]
    Koplin, R., Wang, G., Hotte, B., Priefer, U.B., Puhler, A. (1993) A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J. Bacteriol. 175, 77867792.
  • [27]
    Fraysse, N., Jabbouri, S., Treilhou, M., Couderc, F., Poinsot, V. (2002) Symbiotic conditions induce structural modifications of Sinorhizobium Sp. NGR234 surface polysaccharides. Glycobiology 12, 741748.
  • [28]
    Zdorovenko, E.L., Ovod, V.V., Shashkov, A.S., Kocharova, N.A., Knirel, Yu.A., Krohn, K. (1999) Structure of the O-polysaccharide of the lipopolysaccharide of Pseudomonas syringae pv. garcae ICMP 8047. Biochemistry 64, 765773.
  • [29]
    Senchenkova, S.N., Shashkov, A.S., Kecskes, M.L., Ahohuendo, B.C., Knirel, Yu.A., Rudolph, K. (2000) Structure of the O-specific polysaccharide of the lipopolysaccharides of Xanthomonas campestris pv. vignicola GSPB 2795 and GSPB 2796. Carbohydr. Res. 329, 831838.
  • [30]
    Molinaro, A., De Castro, C., Lanzetta, R., Parrilli, M., Petersen, B.O., Broberg, A., Duus, J. (2002) NMR and MS evidences for a random assembled O-Specific chain structure in the LPS of the bacterium Xanthomonas campestris pv. vitians. Eur. J. Biochem. 269, 41854193.
  • [31]
    Fedonenko, Y.P., Zatonsky, G.V., Konnova, S.A., Zdorovenko, E.L., Ignatov, V.V. (2002) Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. Carbohydr. Res. 337, 869872.
  • [32]
    Mergaert, P., Van Montagu, M., Holsters, M. (1997) The nodulation gene NolK of Azorhizobium caulinodans is involved in the formation of GDP-Fucose from GDP-mannose. FEBS Lett. 409, 312316.
  • [33]
    Price, N.P.J. (1999) Carbohydrate determinants of Rhizobium-legume symbiosis. Carbohydr. Res. 317, 19.
  • [34]
    Jabbouri, S., Relic, B., Hanin, M., Kamalaprija, P., Burger, U., Prome, D., Prome, J.C., Broughton, W.J. (1998) NolO and NoeI (HsnIII) of Rhizobium Sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. J. Biol. Chem. 273, 1204712055.
  • [35]
    Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., Perret, X. (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394401.
  • [36]
    Koplin, R., Arnold, W., Hotte, B., Simon, R., Wang, G., Puhler, A. (1992) Genetics of xanthan production in Xanthomonas campestris: the XanA and XanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 174, 191199.
  • [37]
    Nogales, J., Campos, R., Benabdelkhalek, H., Olivares, J., Lluch, C., Sanjuan, J. (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol. Plant-Microbe Interact. 15, 225232.
  • [38]
    Coutinho, P.M., Deleury, E., Davies, G.J., Henrissat, B. (2003) An evolving hierarchical family classification for glycosyl transferases. J. Mol. Biol. 328, 307317.
  • [39]
    Whitfield, C., Amor, P.A., Koplin, R. (1997) Modulation of the surface architecture of Gram-negative bacteria by the action of surface polymer:lipid A-core ligase and by determinants of polymer chain length. Mol. Microbiol. 23, 629638.
  • [40]
    Lerouge, I., Laeremans, T., Verreth, C., Vanderleyden, J., Van Soom, C., Tobin, A., Carlson, R.W. (2001) Identification of an ATP-binding cassette transporter for export of the O-antigen across the inner membrane in Rhizobium etli based on the genetic, functional, and structural analysis of an Lps mutant deficient in O-antigen. J. Biol. Chem. 276, 1719017198.
  • [41]
    McKay, I.A., Djordjevic, M.A. (1993) Production and excretion of Nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl. Environ. Microbiol. 59, 33853392.
  • [42]
    Spaink, H.P., Wijfjes, A.H.M., Lugtenberg, B.J.J. (1995) Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J. Bacteriol. 177, 62766281.
  • [43]
    Economou, A., Hamilton, W.D., Johnston, A.W., Downie, J.A. (1990) The Rhizobium nodulation gene NodO encodes a Ca2+ binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J. 9, 349354.
  • [44]
    Vlassak, K.M., Luyten, E., Verreth, C., van Rhijn, P., Bisseling, T., Vanderleyden, J. (1998) The Rhizobium sp. BR816 NodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol. Plant-Microbe Interact. 11, 383392.
  • [45]
    Sutton, J.M., Lea, E.J., Downie, J.A. (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae Forms ion channels in membranes. Proc. Natl. Acad. Sci. USA 91, 99909994.
  • [46]
    Leclerc, G., Wang, S.P., Ely, B. (1998) A new class of Caulobacter crescentus flagellar genes. J. Bacteriol. 180, 5015019.
  • [47]
    Power, P.M., Jennings, M.P. (2003) The genetics of glycosylation in Gram-Negative bacteria. FEMS Microbiol. Lett. 218, 211222.
  • [48]
    Schwedock, J.S., Liu, C., Leyh, T.S., Long, S.R. (1994) Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J. Bacteriol. 176, 70557064.
  • [49]
    Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C., Denarie, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781784.
  • [50]
    Cedergren, R.A., Lee, J., Ross, K.L., Hollingsworth, R.I. (1995) Common links in the structure and cellular localization of Rhizobium chitolipopolysaccharides and general Rhizobium membrane phospholipid and glycolipid components. Biochemistry 34, 44674477.
  • [51]
    Shen, Y., Sharma, P., da Silva, F.G., Ronald, P. (2002) The Xanthomonas oryzae pv. oryzae RaxP and RaxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol. 44, 3748.
  • [52]
    Shen, Y., Ronald, P. (2002) Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes Infect. 4, 13611367.
  • [53]
    Snoeck, C., Verreth, C., Hernandez-Lucas, I., Martinez-Romero, E., Vanderleyden, J. (2003) Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816: the CysDN sulfate activation complex. Appl. Environ. Microbiol. 69, 20062014.
  • [54]
    Finan, T.M., Weidner, S., Wong, K., Burhmester, J., Chain, P., Vorholter, F.J., Hernandez-Lucas, I., Becker, A., Cowie, A., Gouzy, J., Golding, B., Puhler, A. (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA 98, 98899894.
  • [55]
    Michiels, K., Croes, C., Vanderleyden, J. (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137, 22412246.
  • [56]
    Katupitiya, S., Millet, J., Vesk, M., Viccars, L., Zeman, A., Lidong, Z., Elmerich, C., Kennedy, I.R. (1995) A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl. Environ. Microbiol. 61, 19871995.