• [1]
    Antón, J., Oren, A., Benlloch, S., Rodrı́guez-Valera, F., Amann, R., Rosselló-Mora, R. (2002) Salinibacter ruber gen. nov., sp. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485491.
  • [2]
    Antón, J., Rosselló-Mora, R., Rodrı́guez-Valera, F., Amann, R. (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 30523057.
  • [3]
    Oren, A., Mana, L. (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6, 217223.
  • [4]
    Oren, A., Heldal, M., Norland, S., Galinski, E.A. (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6, 491498.
  • [5]
    Oren, A. (2002) Halophilic Microorganisms and their Environments. Kluwer Scientific, Dordrecht.
  • [6]
    Ventosa, A., Nieto, J.J., Oren, A. (1998) Biology of aerobic moderately halophilic bacteria. Microbiol. Mol. Biol. Rev. 62, 504544.
  • [7]
    Rosselló-Mora, R., Lee, N., Antón, J., Wagner, M. (2003) Substrate update in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7, 409413.
  • [8]
    Oren, A. (1993) Availability, uptake and turnover of glycerol in hypersaline environments. FEMS Microbiol. Ecol. 12, 1523.
  • [9]
    Oren, A. (1995) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol. Ecol. 16, 281290.
  • [10]
    Oren, A., Mana, L. (2003) Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol. Lett. 223, 8387.
  • [11]
    Oren, A., Gurevich, P. (1994) Distribution of glycerol dehydrogenase and glycerol kinase activity in halophilic archaea. FEMS Microbiol. Lett. 118, 311316.
  • [12]
    Oren, A., Gurevich, P. (1994) Production of d-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol. Ecol. 14, 147156.
  • [13]
    Tomlinson, G.A., Hochstein, L.I. (1972) Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can. J. Microbiol. 18, 19731976.
  • [14]
    Lin, E.C.C. (1976) Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30, 535578.
  • [15]
    Rawal, N., Kelkar, S.M., Altekar, W. (1988) Alternative routes of carbohydrate metabolism in halophilic archaebacteria. Indian J. Biochem. Biophys. 25, 674686.
  • [16]
    Wassef, M.K., Sarner, J., Kates, M. (1970) Stereospecificity of the glycerol kinase and the glycerophosphate dehydrogenase in Halobacterium cutrirubrum. Can. J. Biochem. 48, 6973.
  • [17]
    Bonete, M.-J., Pérez-Pomares, F., Dı́az, S., Ferrer, J., Oren, A. (2003) Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber. FEMS Microbiol. Lett. 226, 181186.
  • [18]
    Baxter, R.M., Gibbons, N.E. (1954) The glycerol dehydrogenases of Pseudomonas salinaria, Vibrio costicola, and Escherichia coli in relation to bacterial halophilism. Can. J. Biochem. Physiol. 32, 206217.
  • [19]
    Borowitzka, L.J. (1981) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81, 3346.
  • [20]
    Wegmann, K., Ben-Amotz, A., Avron, M. (1980) Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant Physiol. 66, 11961197.