• Antler;
  • PTHrP;
  • Integument;
  • Epidermis;
  • Dermis;
  • Cartilage;
  • Bone


Antler growth is highly co-ordinated, so that trabecular bone and antler skin (velvet) develop together, at a rapid rate and in a manner reminiscent of their development in the fetus. Parathyroid hormone-related peptide (PTHrP) is expressed in both bone and skin, and is therefore a candidate to effect co-ordination between these tissues. The aim of this study was to localize the expression of PTHrP and its principal receptor, the parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrPR), in antler (“spiker”) of one-year-old red deer. Using immunohistochemistry and in situ hybridization, intense and overlapping expression of PTHrP and its receptor was seen in developing osseocartilaginous structures and in the underlying layers of velvet epidermis. PTHrP was located on both the cell surface and within the nuclei. Our results strongly suggest that PTHrP, acting via the PTH/PTHrPR and possibly other intracrine mechanisms, plays a central role in the co-ordinated regulation of cell division and differentiation of developing antler bone and skin.