Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide


Corresponding author. Tel.: +381 34 331344; fax: +381 34 331345.


Apoptosis is a highly regulated and programmed cell breakdown process characterized by numerous changes. Since it is implicated in many pathological as well as physiological processes, it is vital to have reliable methods for detecting cell death.

In this study, we compared several methods for detecting apoptosis and necrosis in human leukocytes. Apoptosis was induced either by incubating the cells with various doses of cycloheximide (CHX) or by 312 nm UVB irradiation. The methods used for detecting apoptosis were light microscopy (May Grunwald—Giemsa and trypan blue staining), fluorescence microscopy (acridin orange/ethidium bromide and annexin V/propidium iodide staining) and agarose gel electrophoresis of fragmented genomic DNA.

Our study showed that CHX-induced apoptosis in cultured peripheral blood mononuclear cells but had no effect on apoptosis in polymorphonuclear cells, so its effect depends on cell type. Evaluation and comparison of the methods for detecting apoptosis showed the following. A Giemsa-stained cytospin allows the main morphological characteristics of necrotic and apoptotic death to be recognized. Trypan blue staining, widely used for estimating cell viability, is valueless for detecting apoptosis. Both fluorescence methods provided reliable and reproducible results and distinguished clearly between subpopulations of apoptotic cells, and were closely intercorrelated. Although applicable to a wide spectrum of cell types, agar electrophoresis of extracted DNA cannot be applied to all cell types and apoptotic conditions. Generally, microscopic examination of acridin orange/ethidium bromide stained cells can be recommended as the most reliable of the methods tested.