• siRNA;
  • MAPK 1;
  • Apoptosis;
  • HeLa cell;
  • Microarray


The mitogen activated protein kinases (MAPK) signaling cascade plays an important role in cell life. We proved that small interfering RNAs targeting MAPK1 (siRNA-2) could inhibit HeLa cell growth, but the effects of siRNA-2 on gene expression profile were unclear. Using Affymetrix GeneChip HG-U133A 2.0, we identified the long-term changes for 48 h in gene expression profile in HeLa cell treated by siRNA-2. The results showed that expressions of 181 genes were altered by siRNA-2 and were divided into two groups: (i) one group showed downregulation by siRNA-2, including the proliferation associated genes, small G protein, cytoskeleton associated protein and extracellular matrix associated protein; and (ii) the other group showed upregulation by siRNA-2, including interferon response genes, OAS family, TRIM family and apoptosis associated genes. The results of Real-time quantitative PCR for MAPK1, NUP188, P38, STAT1, STAT2, MPL and OAS1 were consistent with that of gene chip. Two networks were found to react substantially to the downregulation of MAPK1 by siRNA-2. One of the networks regulates cell growth through cell-cycle control, apoptosis and cytoskeleton. The other network is related to interferon-like response. Our findings suggest that siRNA-mediated downregulation of MAPK1 could be an attractive strategy for cancer therapy.