Stem cell engineering for treatment of heart diseases: Potentials and challenges

Authors

  • Shengwen Calvin Li,

    Corresponding author
    1. Children's Hospital of Orange County Research Institute, 455 South Main Street, Orange, CA 92868, USA
    2. Department of Biological Science, California State University, Fullerton, CA 92834, USA
    3. Departments of Neurology and Neurological Surgery, University of California, Irvine, CA 92697, USA
    4. Stem Cell and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
    Search for more papers by this author
  • Lang Wang,

    1. Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, 238 Jie Fang Road, Wuchang, Wuhan, 430060 Hubei Province, People's Republic of China
    Search for more papers by this author
  • Hong Jiang,

    1. Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, 238 Jie Fang Road, Wuchang, Wuhan, 430060 Hubei Province, People's Republic of China
    Search for more papers by this author
  • Julyana Acevedo,

    1. Department of Biological Science, California State University, Fullerton, CA 92834, USA
    Search for more papers by this author
  • Anthony Christopher Chang,

    1. Children's Hospital of Orange County Heart Institute, 455 South Main Street, Orange, CA 92868, USA
    Search for more papers by this author
  • William Gunter Loudon

    1. Children's Hospital of Orange County Research Institute, 455 South Main Street, Orange, CA 92868, USA
    2. Departments of Neurology and Neurological Surgery, University of California, Irvine, CA 92697, USA
    Search for more papers by this author

Children's Hospital of Orange County Research Institute, 455 South Main Street, Orange, CA 92868, USA. Tel.: +1 714 289 4964; fax: +1 714 516 4318. E-mail addresses: sli@choc.org

Abstract

Heart disorders are a major health concern worldwide responsible for millions of deaths every year. Among the many disorders of the heart, myocardial infarction, which can lead to the development of congestive heart failure, arrhythmias, or even death, has the most severe social and economic ramifications. Lack of sufficient available donor hearts for heart transplantation, the only currently viable treatment for heart failure other than medical management options (ACE inhibition, beta blockade, use of AICDs, etc.) that improve the survival of patients with heart failure emphasises the need for alternative therapies. One promising alternative replaces cardiac muscle damaged by myocardial infarction with new contractile cardiomyocytes and vessels obtained through stem cell-based regeneration.

We report on the state of the art of recovery of cardiac functions by using stem cell engineering. Current research focuses on (a) inducing stem cells into becoming cardiac cells before or after injection into a host, (b) growing replacement heart tissue in vitro, and (c) stimulating the proliferation of the post-mitotic cardiomyocytes in situ. The most promising treatment option for patients is the engineering of new heart tissue that can be implanted into damaged areas. Engineering of cardiac tissue currently employs the use of co-culture of stem cells with scaffold microenvironments engineered to improve tissue survival and enhance differentiation. Growth of heart tissue in vitro using scaffolds, soluble collagen, and cell sheets has unique advantages. To compensate for the loss of ventricular mass and contractility of the injured cardiomyocytes, different stem cell populations have been extensively studied as potential sources of new cells to ameliorate the injured myocardium and eventually restore cardiac function. Unresolved issues including insufficient cell generation survival, growth, and differentiation have led to mixed results in preclinical and clinical studies. Addressing these limitations should ensure the successful production of replacement heart tissue to benefit cardiac patients.

Ancillary