• [1]
    Galan, J.E., Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 13221328.
  • [2]
    Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animal and plants. Microbiol. Mol. Biol. Rev. 62, 379433.
  • [3]
    Jin, Q., Thilmony, R., Zwiesler-Vollick, J., He, S.-Y. (2003) Type III protein secretion in Pseudomonas syringae. Microb. Infect. 5, 301310.
  • [4]
    Alfano, J.R., Collmer, A. (1997) Type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179, 56555662.
  • [5]
    Bogdanove, A.J., Beer, S.V., Bonas, U., Boucher, C.A., Collmer, A., Coplin, D.L., Cornelis, G.R., Huang, H.-C., Hutcheson, S.W., Panopoulos, N.J., van Gijsegem, F. (1996) Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20, 681683.
  • [6]
    He, S.Y. (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36, 363392.
  • [7]
    Russel, M. (1994) Phage assembly: a paradigm for bacterial virulence factor export. Science 265, 612614.
  • [8]
    Collmer, A., Badel, J.L., Charkowski, A.O., Deng, W.-L., Fouts, D.E., Ramos, A.R., Rehm, A.H., Anderson, D.M., Schneewind, O., van Dijk, K., Alfano, J.R. (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97, 87708777.
  • [9]
    Marie, C., Broughton, W.J., Deakin, W.J. (2001) Rhizobium type III secretion systems: legume charmers or alarmers. Curr. Opin. Plant Biol. Infect. 4, 336342.
  • [10]
    Krishnan, H.B. (2002) NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J. Bacteriol. 184, 831839.
  • [11]
    Walsh, U.F., Morrissey, J.P., O'Gara, F. (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12, 289295.
  • [12]
    Cao, H., Baldini, R.L., Rahme, L.G. (2001) Common mechanism for pathogens of plants and animals. Annu. Rev. Phytopathol. 39, 259284.
  • [13]
    Charkowski, A.O., Alfano, J.R., Preston, G., Yuang, G., He, S.Y., Collmer, A. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180, 52115217.
  • [14]
    Jakob, K., Goss, E.M., Araki, H., Van, T., Kreitman, M., Bergelson, J. (2002) Pseudomonas viridiflava and P. syringae-natural pathogens of Arabidopsis thaliana. Mol. Plant Microbe Interact. 15, 11951203.
  • [15]
    Mulya, K., Takikawa, Y., Tsuyumu, S. (1996) The presence of regions homologous to hrp cluster in Pseudomonas fluorescens PfG32R. Ann. Phytopathol. Soc. Jpn. 62, 355359.
  • [16]
    Mazurier, S., Delorme, S., Siblot, S., Lemanceau, P. (2000) Presence of DNA sequences characteristic of type III secretion systems in biocontrol Pseudomonas fluorescens strain C7, p. 77. In: Proceedings of the 5th International PGPR Workshop, Cordoba, Argentina, October 3–November 3, 2000.
  • [17]
    Preston, G., Bertrand, N., Rainey, P.B. (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol. 41, 9991014.
  • [18]
    Lemanceau, P., Samson, R. (1983) Relations entre quelques caractéristiques in vitro de 10 Pseudomonas fluorescents et leur effet sur la croissance du haricot (Phaseolus vulgaris), p. 327. In “Les antagonismes microbiens”, 24ème colloque de la SFP, Bordeaux, 360 pp.
  • [19]
    Gamalero, E., Martinotti, M.G., Trotta, A., Lemanceau, P., Berta, G. (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to the plant growth conditions. New Phytol. 155, 293300.
  • [20]
    Lemanceau, P., Alabouvette, C. (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protect. 10, 279286.
  • [21]
    Fenton, A.M., Stephens, P.M., Crowley, J., O'Callaghan, M., O'Gara, F. (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58, 38733878.
  • [22]
    Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D.N., O'Gara, F. (1997) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 63, 13571361.
  • [23]
    Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dowling, D.N., O'Gara, F. (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol. Ecol. 23, 95106.
  • [24]
    Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J.M., Alabouvette, C. (1995) Effect of two plant species flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soilborne populations of fluorescent pseudomonads. Appl. Environ. Microbiol. 61, 10041012.
  • [25]
    Latour, X., Corberand, T., Laguerre, G., Allard, F., Lemanceau, P. (1996) The composition of fluorescent pseudomonad population associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62, 24492556.
  • [26]
    Bossis, E. (1995) Les Pseudomonas fluorescents de la rhizosphère: étude taxonomique et effets sur la croissance la tomate et du maí¨s, de la germination à la levée. Thèse de doctorat, 143 pp. Université de Nantes, France.
  • [27]
    Miller, J.H. Experiments in Molecular Genetics. pp. 132–135 (1972) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • [28]
    Brenner, D.J., McWhorter, A.C., Knuston, J.K., Steigerwalt, A.G. (1982) Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15, 11331140.
  • [29]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • [30]
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 137, 697703.
  • [31]
    Laguerre, G., Rigottier-Gois, L., Lemanceau, P. (1994) Fluorescent Pseudomonas species categorized by using Polymerase Chain Reaction (PCR)/restriction fragment analysis of 16S rDNA. Mol. Ecol. 3, 479487.
  • [32]
    van de Peer, Y., de Wachter, R. (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10, 569570.
  • [33]
    Jukes, T.H., Cantor, C.R. (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism (Munro, H.H., Ed.), pp.21–132 Academic Press, New York..
  • [34]
    Sneath, P.H.A., Sokal, R.R. (1973) Numerical Taxonomy, the Principles and Practice of Numerical Classification. Freeman, San Francisco..
  • [35]
    Rohlf, F.J. (1998) NTSYS: Numerical Taxonomy and Multivariate Analysis System, second ed. Exeter Software, State University of New York, Stany Brook, NY..
  • [36]
    Jaccard, P. (1908) Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223270.
  • [37]
    van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J. (1998) Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36, 453483.
  • [38]
    Sawada, H., Suzuki, F., Matsuda, I., Saitou, N. (1999) Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of arg K and the evolutionary stability of hrp gene cluster. J. Mol. Evol. 49, 627644.
  • [39]
    Alfano, J.R., Charkowski, A.O., Deng, W.-L., Badel, J.L., Petnicki-Ocwieja, T., van Dijk, K., Collmer, A. (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 98, 48564861.
  • [40]
    Deng, W.-L., Rehm, A.H., Charkowski, A.O., Clemencia, M.R., Collmer, A. (2003) Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol. 185, 25922602.
  • [41]
    Fouts, D.E., Badel, J.L., Ramos, A.R., Rapp, R.A., Collmer, A. (2003) A Pseudomonas syringae pv. tomato DC3000 Hrp (type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato. Mol. Plant Microbe Interact. 16, 4352.
  • [42]
    Oger, P., Dessaux, Y., Petit, A., Gardan, L., Manceau, C., Chomel, C., Nesme, X. (1998) Validity, sensitivity and resolution limit of the PCR-RFLP analysis of the rrs (16S rRNA gene) as a tool to identify soil-borne and plant-associated bacterial populations. Genet. Sel. Evol. S1, S311321.
  • [43]
    Delorme, S., Philippot, L., Edel-Hermann, V., Deulvot, C., Mougel, C., Lemanceau, P. (2003) Comparative genetic diversity of the nar G, nos Z, and 16S rRNA genes in fluorescent pseudomonads. Appl. Environ. Microbiol. 69, 10041012.
  • [44]
    Keel, C., Weller, D.M., Natsch, A., Défago, G., Cook, R.J., Thomashow, L.S. (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62, 552563.
  • [45]
    Charity, J.C., Pak, K., Delwiche, C.F., Hutcheson, S.W. (2003) Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes. Mol. Plant Microbe Interact. 16, 495507.
  • [46]
    Gophna, U., Ron, E.Z., Graur, D. (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151163.