• [1]
    Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G. (1982) Soil carbon pools and world life zones. Nature 298, 156159.
  • [2]
    Oechel, W.C., Billings, W.D. Effects of Global Change on the Carbon Balance of Artic Plants and Ecosystems. Chapin, F.S., Ed. Arctic Ecosystems in a Changing Climate. An Ecophysiological Perspective (1992) Academic, San Diego, CA.
  • [3]
    Smith, L.C., MacDonald, G.M., Velichko, A.A., Beilman, D.W., Borisova, O.K., Frey, K.E., Kremenetski, K.V., Sheng, Y. (2004) Siberian peatlands a net carbon sink and global methane source since the early holocene. Science 303, 353356.
  • [4]
    Gorham, E. (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl 1, 182195.
  • [5]
    Nadelhoffer, K.J., Giblin, G.R., Shaver, G.R., Linkins, A.E. Microbial Processes and Plant Nutrient Availability in Arctic Soils. Chapin, F.S., Ed. Arctic Ecosystems in a Changing Climate. An Ecophysiological Perspective (1992) Academic, San Diego, CA.
  • [6]
    Khalil, M.A.K., Rasmussen, R.A. (1983) Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res 88, 51315144.
  • [7]
    Christensen, T.R., Jonasson, S., Havström, M., Livens, F.R. (1999) Carbon cycling and methane exchange in Eurasian tundra ecosystems. AMBIO 28, 239244.
  • [8]
    Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L.P., Fraser, P.J. (1991) Three dimensional model synthesis of the global methane cycle. J. Geophys. Res 96, 1303313065.
  • [9]
    IPCC (Intergovernmental Panel of Climate Change) (1990) Scientific Assessment. Cambridge University Press, Cambridge.
  • [10]
    Christensen, T. (1991) Arctic and sub-Arctic soil emissions: possible implications for global climate change. Polar Record 27, 205210.
  • [11]
    Chen, G., Zhu, H., Zhang, Y. (2003) Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol 154, 393398.
  • [12]
    Zyvangtsev, D. (1994) Vertical Distribution of Microbial Communities in Soils. In: Beyond the Biomass (Ritz, K., Dighton, J., Giller, K., Eds.), pp.29–37 Wiley, West Sussex, UK..
  • [13]
    Blume, E., Bischoff, M., Reichert, J., Moorman, T., Konopka, A., Turco, R. (2002) Surface and subsurface community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol 592, 111.
  • [14]
    Skinner, F.A., Jones, P.C.T., Mollison, J.E. (1952) A comparison of a direct- and a plate-counting technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol 6, 261271.
  • [15]
    Wagner, M., Amann, R., Lemmer, H., Schleifer, K.-H. (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol 59, 12501525.
  • [16]
    Amann, R.I., Ludwig, W., Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. FEMS Microbiol. Rev 59, 143169.
  • [17]
    Poulsen, L.K., Ballard, G., Stahl, D.A. (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol 59, 13541360.
  • [18]
    Kemp, P.F., Lee, S., LaRoche, J. (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol 59, 25942601.
  • [19]
    DeLong, E.F., Wickham, G.S., Pace, N.R. (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243, 13601362.
  • [20]
    Hahn, D., Amann, R.I., Ludwig, W., Akkermanns, A.D.L., Schleifer, K.-H. (1992) Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. Gen. Microbiol 138, 879887.
  • [21]
    Moter, A., Göbel, U.B. (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Meth 41, 85112.
  • [22]
    Amann, R., Glöckner, F.-O., Neef, A. (1997) Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiol. Rev 20, 191200.
  • [23]
    Pernthaler, J., Glöckner, F.O., Schönhuber, W., Amann, R. Fluorescence In situ Hybridization with rRNA-targeted Oligonucleotide Probes. Paul, J., Ed. Methods in Microbiology: Marine Microbiology Vol. 30. (2001) Academic Press, London
  • [24]
    Amann, R.I. (1995) In situ Identification of Micro-organisms by Whole Cell Hybridization with rRNA-targeted Nucleic Acid Probes. In: Molecular Microbial Ecology Manual (Akkemann, A.D.C., van Elsas, J.D., de Bruigin, F.J., Eds.), pp.1–15 Kluwer Academic Publishers, Dortrecht..
  • [25]
    Christensen, H., Hansen, M., Sørensen, J. (1999) Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Environ. Microbiol 65, 17531761.
  • [26]
    Bouvier, T., Del Giorgio, P.A. (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol. Ecol 44, 315.
  • [27]
    Wagner, D., Kobabe, S., Pfeiffer, E.-M., Hubberten, H.-W. (2003) Microbial controls on methane fluxes from a polygonal Tundra of the Lena Delta, Siberia. Permafrost and Periglac. Process 14, 173185.
  • [28]
    Rachold, V., Grigoriev, M.N. (Eds.) (2000). Russian–German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 1999. Reports on Polar Research 354, pp. 1–269.
  • [29]
    Schwamborn, G., Rachold, V., Grigoriev, M.N. (2002) Late Quaternary sedimentation history of the Lena Delta. Quatern. Int 89, 119134.
  • [30]
    Hydrometeorological Centre of Russia. Russia's Weather. Available from
  • [31]
    Kutzbach, L., Wagner, D. and Pfeiffer, E.-M. (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry, in press.
  • [32]
    Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., Eds. Field Book for Describing and Sampling Soils, Version 2.0 (2002) Natural Resources Conservation service, National Soil Survey Center, Lincoln, NE.
  • [33]
    Schlichting, E., Blume, H.-P., Stahr, K. (1995) Bodenkundliches Praktikum – Pareys Studientexte 81. Blackwell Wissensverlag, Berlin..
  • [34]
    Soil Survey Staff (1998) Keys to Soil Taxonomy, 8th edn. USDA – The National Resources Conservation Service, Lincoln.
  • [35]
    Friedrich, K. (2001) Energie- und Wasserhaushalt eines Tundrenstandortes im Lena-Delta. Diploma-thesis, TU Dresden.
  • [36]
    Sherr, B.F., Sherr, E.B., Fallon, R.D. (1987) Use of monodispersed, fluorescently labelled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol 53, 958965.
  • [37]
    Bloem, J., Veninga, M., Shephard, J. (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl. Environ. Microbiol 61, 926936.
  • [38]
    Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.-H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol 63, 28842896.
  • [39]
    Stahl, D.A., Amann, R. (1991) Development and Application of Nucleic Acid Probes. In: Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E., Goodfellow, M., Eds.), pp.205–248 Wiley, New York..
  • [40]
    Daims, H., Ramsing, N.B., Schleifer, K.-H., Wagner, M. (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl. Environ. Microbiol 67, 58105818.
  • [41]
    Friedrich, U., Naismith, M.M., Altendorf, K., Lipski, A. (1999) Community analysis of biofilters using fluorescence in situ hybridization including a new probe for the Xanthomonas branch of the class Proteobacteria. Appl. Environ. Microbiol 65, 35473554.
  • [42]
    Felske, A., Akkermans, A.D.L., de Vos, W.M. (1998) In situ detection of an uncultured predominant bacillus in Dutch grassland soils. Appl. Environ. Microbiol 64, 45884590.
  • [43]
    Schmidt, N. (1999) Microbial properties and habitats of permafrost soils an Taymir peninsula, central Siberia. Reports on Polar Research 340, pp. 1–164.
  • [44]
    Dedysh, S.N., Dunfield, P.F., Derakshani, M., Stubner, S., Heyer, J., Liesack, W. (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol. Ecol 43, 299308.
  • [45]
    Atlas, R.M., Bartha, R. (1993) Microbial Ecology Fundamentals and Applications. The Benjamin/Cummings, Redwood City, CA..
  • [46]
    Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., Vishnivetskaya, T. (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev 20, 277290.
  • [47]
    Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D., Tiedje, J.M. (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165173.
  • [48]
    Rivkina, E.M., Friedmann, E.I., McKay, C.P., Gilichinsky, D.A. (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol 66, 32303233.
  • [49]
    Zarda, B., Hahn, D., Chatzinotas, A., Schönhuber, W., Neef, A., Amann, R.I., Zeyer, J. (1997) Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol 168, 185192.
  • [50]
    Lynch, J.M. (1998) Microorganisms in their Natural Environments: The Terrestrial Environment. In: Micro-organisms in Action: Concepts and Applications in Microbial Ecology (Lynch, J.M., Hobbie, J.E., Eds.), pp.103–131 Blackwell Scientific, London, England..
  • [51]
    Smith, J.L., Paul, E.A. (1990) The Significance of Soil Microbial Biomass Estimations. In: Soil Biochemistry (Bollag, J.-M., Stotzky, G., Eds.), pp.357–395 Marcel Dekker, New York, NY..
  • [52]
    Aldén, L., Demoling, F., Bååth, E. (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl. Environ. Microbiol 67, 18301838.
  • [53]
    Fierer, N., Schimel, J.P., Holden, P.A. (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem 35, 167176.
  • [54]
    Holmes, B. The Genera Flavobacterium, Sphingobacterium, and Weeksella. Dworkin, M., Ed. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, Release 3.0. 3rd edn. (1999) Springer, New York
  • [55]
    Reichenbach, H. The Order Cytophagales. Dworkin, M., Ed. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, Release 3.0. 3rd edn. (1999) Springer-Verlag, New York
  • [56]
    LaMontagne, M.G., Schimel, J.P., Holden, P.A. (2003) Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16SrRNA genes. Microb. Ecol 46, 216227.
  • [57]
    Rovira, A.D. (1956) Plant root excretions in relation to the rhizosphere effect II. A study of the properties of root exudates and its effect on the growth of micro-organisms isolated from the rhizosphere and control soil. Plant Soil 7, 195208.
  • [58]
    Bolton Jr., H., Fredrickson, J.K. and Elliott, L.F. (1993) Microbial Ecology of the Rhizosphere. In: Soil Microbial Ecology (Metting Jr., F.B., Ed.), pp. 27–63. Marcel Dekker, New York.
  • [59]
    Armstrong, J., Armstrong, W., Beckett, P.M., Halder, J.E., Lythe, S., Holt, R., Sinclair, A. (1996) Pathway of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav) Trin.ex Steud. Aquat. Bot 54, 177197.
  • [60]
    Brix, H., Sorrell, B.K., Schierup, H.H. (1996) Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat. Bot 54, 151163.
  • [61]
    Bendix, M., Tornbjerg, T., Brix, H. (1994) Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquat. Bot 49, 7589.
  • [62]
    Hales, B.A., Edwards, C., Ritchie, D.A., Hall, G., Pickup, R.W., Saunders, J.R. (1995) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification. Appl. Environ. Microbiol 62, 668675.
  • [63]
    Whitman, W.B., Bowen, T.C., Boone, D.R. The Methanogenic Bacteria. Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.H., Eds. The Prokaryotes Vol. 1. (1992) Springer. 719–767.
  • [64]
    Wagner, D., Pfeiffer, E.-M. (1997) Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiol. Ecol 22, 145153.
  • [65]
    Mayer, H.-P., Conrad, R. (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soils. FEMS Microbiol. Ecol 73, 103112.
  • [66]
    Peters, V., Conrad, R. (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol 61, 16731676.
  • [67]
    Wachinger, G., Fiedler, S., Zepp, K., Gattinger, A., Sommer, M., Roth, K. (2000) Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and archaeal populations. Soil Biol. Biochem 32, 11211130.
  • [68]
    Valentine, D.W., Holland, E.A., Schimel, D.S. (1994) Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res 99, 15631571.
  • [69]
    Harris, J.M., Tibbles, B.J. (1997) Factors affecting bacterial productivity in soils on isolated inland nunataks in continental Antarctica. Microb. Ecol 33, 106123.
  • [70]
    Bölter, M., Blume, H.-P., Kuhn, D. (1999) Soils and their microbiological properties from a transect from Cape Horn to the Antarctic Peninsula. Polar Biosci 12, 5467.
  • [71]
    Zepp-Falz, K., Holliger, C., Großkopf, R., Liesack, W., Nozhenikova, A.N., Müller, B., Wehrli, B., Hahn, D. (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl. Environ. Microbiol 65, 24022408.
  • [72]
    Munsell (1975) Soil color chart. Kolmogen, Baltimore..
  • [73]
    Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A. (1990) Combination of16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol 56, 19191925.
  • [74]
    Daims, H., Brühl, A., Amann, R., Schleifer, K-H., Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria; development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol 22, 434444.
  • [75]
    Wallner, G., Amann, R., Beisker, W. (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136143.
  • [76]
    Neef, A. (1997) Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Ph.D. Thesis, Technische Universität München.
  • [77]
    Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K-H. (1992) Phylogenetic Oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol 15, 593600.
  • [78]
    Roller, C., Wagner, M., Amann, R., Ludwig, W., Schleifer, K.-H. (1994) In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140, 28492858.
  • [79]
    Meier, H., Amann, R., Ludwig, W., Schleifer, K-H. (1999) Specific oligonucelotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst. Appl. Microbiol 22, 186196.