SEARCH

SEARCH BY CITATION

References

  • [1]
    Caumartin, V. (1963) Review of the microbiology of underground environments. Nat. Speleol. Soc. Bull. 25, 114.
  • [2]
    Pedersen, K. (2001) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 916.
  • [3]
    Naeem, S. (2002) Autotrophic–heterotrophic interactions and their impacts on biodiversity and ecosystem functioning. In: The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Kinzig, A.P., Pacala, S.W., Tilman, D., Eds.), pp.96–119 Princeton University Press, Princeton, NJ.
  • [4]
    Alfreider, A., Vogt, C., Hoffman, D., Babel, W. (2003) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit from groundwater and aquifer microorganisms. Microb. Ecol. 45, 317328.
  • [5]
    Kinkle, B., Kane, T.C. (2000) Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In: Ecosystems of the World 30 (Wilkens, H., Culver, D.C., Humphreys, W.F., Eds.), pp.309–318 Elsevier, Amsterdam.
  • [6]
    Stevens, T. (1997) Lithoautotrophy in the subsurface. FEMS Microbiol. Rev. 20, 327337.
  • [7]
    Sarbu, S.M., Kane, T.C., Kinkle, B.K. (1996) A chemoautotrophically based cave ecosystem. Science 272, 19531955.
  • [8]
    Vlasceanu, L., Sarbu, S.M., Engel, A.S., Kinkle, B.K. (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J. 17, 125139.
  • [9]
    Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., Rölleke, S. (2003) Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol. Ecol. 1606, 113.
  • [10]
    Poulson, T.L., Lavoie, K.H. (2000) The trophic basis of subsurface ecosystems. In: Ecosystems of the World 30 (Wilkens, H., Culver, D.C., Humphreys, W.F., Eds.), pp.231–249 Elsevier, Amsterdam.
  • [11]
    Simon, K.S., Benfield, E.F., Macko, S.A. (2003) Food web structure and the role of epilthic biofilms in cave streams. Ecology 84, 23952406.
  • [12]
    Mikell, A.T. Jr. Smith, C.L., Richardson, J.C. (1996) Evaluation of media and techniques to enumerate heterotrophic microbes from karst and sand aquifer springs. Microb. Ecol. 31, 115124.
  • [13]
    Dickson, G.W., Kirk, J.P.W. (1976) Distribution of heterotrophic microorganisms in relation to detritivores in Virginia caves (with supplemental bibliography on cave mycology and microbiology). In: The Distributional History of the Biota of the Southern Appalachians, Part IV, Algae and Fungi (Parker, B.C., Roane, M.K., Eds.), pp.205–226 University Press Virginia, Charlottesville, VA.
  • [14]
    Northup, D.E., Lavoie, K.H. (2001) Geomicrobiology of caves: a review. Geomicrobiol. J. 18, 199222.
  • [15]
    Egemeier, S. (1981) Cave development by thermal waters. Nat. Speleol. Soc. Bull. 43, 3151.
  • [16]
    Angert, E.R., Northup, D.E., Reysenbach, A.-L., Peek, A.S., Goebel, B.M., Pace, N.R. (1998) Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Am. Mineral. 83, 15831592.
  • [17]
    Hose, L.D., Palmer, A.N., Palmer, M.V., Northup, D.E., Boston, P.J., DuChene, H.R. (2000) Microbiology and geochemistry in a hydrogen-sulphide rich karst environment. Chem. Geol. 169, 399423.
  • [18]
    Porter, M.L. (1999) Ecosystem Energetics of Sulfidic Karst. Unpublished Masters thesis, University of Cincinnati, Cincinnati, OH, p. 52
  • [19]
    Sarbu, S.M., Galdenzi, S., Manichetti, M., Gentile, G. (2000) Geology and biology of Grotte di Frasassi (Frasassi Caves) in Central Italy, an ecological multi-disciplinary study of a hypogenic underground karst system. In: Ecosystems of the World 30 (Wilkens, H., Culver, D.C., Humphreys, W.F., Eds.), pp.361–381 Elsevier, Amsterdam.
  • [20]
    Vlasceanu, L., Popa, R., Kinkle, B. (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl. Environ. Microbiol. 63, 31233127.
  • [21]
    Engel, A.S., Porter, M.L., Kinkle, B.K., Kane, T.C. (2001) Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J. 18, 259274.
  • [22]
    Barton, H.A., Taylor, M.R., Pace, N.R. (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol. J. 21, 1120.
  • [23]
    Holmes, A.J., Tujula, N.A., Holley, M., Contos, A., James, J.M., Rogers, P., Gillings, M.R. (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol. 3, 256264.
  • [24]
    Northup, D.E., Barns, S.M., Yu, L.E., Spilde, M.N., Schelble, R.T., Dano, K.E., Crossey, L.J., Connolly, C.A., Boston, P.J., Natvig, D.O., Dahm, C.N. (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ. Microbiol. 5, 10711086.
  • [25]
    Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., Rölleke, S. (2002) Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Palaeolithic paintings. Environ. Microbiol. 4, 392400.
  • [26]
    Engel, A.S., Lee, N., Porter, M.L., Stern, L.A., Bennett, P.C., Wagner, M. (2003) Filamentous Epsilonproteobacteria dominate microbial mats in a sulfidic cave. Appl. Environ. Microbiol. 69, 55035511.
  • [27]
    Brigmon, R.L., Furlong, M., Whitman, W.B. (2003) Identification of Thiothrix unzii in two distinct ecosystems. Lett. Appl. Microbiol. 36, 8891.
  • [28]
    Gray, N.D., Head, I.M. (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3, 481492.
  • [29]
    Boschker, H.T.S., Middelburg, J.J. (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40, 8595.
  • [30]
    Chesson, P., Pacala, S.W., Neuhauser, C. (2002) Environmental niches and ecosystem functioning. In: The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Kinzig, A.P., Pacala, S.W., Tilman, D., Eds.), pp.213–245 Princeton University Press, Princeton, NJ.
  • [31]
    Engel, A.S., Stern, L.A., Bennett, P.C. (2004) Microbial contributions to cave formation: new insight into sulfuric acid speleogenesis. Geology 32, 369372.
  • [32]
    American Public Health Association (APHA) (1998) In: Standard Methods for the Examination of Water and Wastewater, 20th ed. (Clesceri, L.S., Greenberg, A.E., Eaton, A. D., Eds.), 1220 pp. US Environmental Protection Agency, American Public Health Association, the Am. Water Works Assoc., and the Water Environ. Fed
  • [33]
    Bratbak, G., Dundas, I. Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48, (1984) 755
  • [34]
    Hassan, A.A. (1982) Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies: evaluation and alternatives. Water Res. Investigations, 82-6. U.S. Geol. Survey. Reston, VA
  • [35]
    McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849857.
  • [36]
    Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E., Goodfellow, M., Eds.), pp.115–175 Wiley, New York, NY.
  • [37]
    Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, H., Strujil, K., Eds. Current Protocols in Molecular Biology. vol. 1. (1990) Greene Publishing Associates and Wiley–Interscience, New York, NY.
  • [38]
    Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T. Jr., Saxman, P.R., Farris, R.J. (2001) The RDP-II (Ribosomal database project). Nucleic Acids Res. 29, 173174.
  • [39]
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 48764882.
  • [40]
    Brimacombe, R., Atmadja, J., Stiege, W., Schüler, D. (1988) A detailed model of the three-dimensional structure of Escherichia coli 16S ribosomal RNA in situ in the 30S subunit. J. Mol. Biol. 199, 115136.
  • [41]
    Swofford, D.L. (2002) PAUP* Phylogenetic analysis using parsimony (∗ and other methods) (version 4). Sinauer Associates, Sunderland, MA.
  • [42]
    Lemmon, A.R., Milimkovitch, M.C. (2002) The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. Proc. Nat. Acad. Sci. USA 99, 1051610521.
  • [43]
    Ronquist, F., Huelsenbeck, J.P. (2003) Mr. Bayes 3: Bayesian phylogenetic inference under mixed models A. Bioinformatics 19, 15721574.
  • [44]
    Huelsenbeck, J.P., Crandall, K.A. (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 28, 437466.
  • [45]
    Posada, D., Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.
  • [46]
    Rousseau, R., van Hecke, P. (1999) Measuring biodiversity. Acta Biotheoretica 47, 15.
  • [47]
    Ricotta, C. (2003) Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy. Acta Biotheoretica 51, 181188.
  • [48]
    Hughes, J.B., Hellmann, J.J., Ricketts, T.H., Bohannan, B.L.M. (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 43994406.
  • [49]
    Martin, A.P. (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 36733682.
  • [50]
    Hill, T.C.J., Walsh, K.A., Harris, J.A., Moffett, B.F. (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43, 111.
  • [51]
    McMahon, R.F. (1975) Growth, reproduction and bioenergetic variation in three natural populations of a freshwater limpit Laevapex fuscus (C.B. Adams). Proc. Malacol. Soc. London 41, 331342.
  • [52]
    Fagerbakke, K.M., Heldal, M., Norland, S. (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorous in native aquatic and cultured bacteria. Aq. Microb. Ecol. 10, 1527.
  • [53]
    Ruby, E.G., Jannasch, H.W., Dueser, W.G. (1987) Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 53, 19401943.
  • [54]
    Nübel, U., Garcia-Pichel, F., Kuhl, M., Muyzer, G. (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65, 422430.
  • [55]
    Speksnijder, A.G.C.L., Kowalchuk, G.A., de Jong, S., Kline, E., Stephen, J.R., Laanbroek, H.J. (2001) Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol. 67, 469472.
  • [56]
    Stackebrandt, E., Goebel, B.M. (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846849.
  • [57]
    Fuhrman, J.A., Campbell, L. (1998) Microbial microdiversity. Nature 393, 410411.
  • [58]
    Rudolph, C., Wanner, G., Huber, R. (2001) Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 23362344.
  • [59]
    Moissl, C., Rudolph, C., Huber, R. (2002) Natural communities of novel Archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl. Environ. Microbiol. 68, 933937.
  • [60]
    Watanabe, K., Kodama, Y., Kaku, N. Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol. 2, (2002) 23 [online]
  • [61]
    Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., Harayama, S. (2000) Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl. Environ. Microbiol. 66, 48034809.
  • [62]
    Kodama, Y., Watanabe, K. (2003) Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl. Environ. Microbiol. 69, 107112.
  • [63]
    Longnecker, K., Reysenbach, A.-L. (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol. Ecol. 35, 287293.
  • [64]
    López-García, P., Gaill, F., Moreira, D. (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol. 4, 204215.
  • [65]
    Airoldi, L., Southward, A.J., Niccolai, I., Cinelli, F. (1997) Sources and pathways of particulate organic carbon in a submarine cave with sulphur water springs. Water Air Soil Poll. 99, 353362.
  • [66]
    Thompson, J.D., Olson, R. (1988) A preliminary survey of the protozoa and bacteria from Sulphur River in Parkers Cave, Kentucky. Nat. Speleol. Soc. Bull. 50, 4246.
  • [67]
    McDonald, I.R., Kelly, D.P., Murrell, J.C., Wood, A.P. (1997) Taxonomic relationships of Thiobacillus halophilus, T. aquaesulis, and other species of Thiobacillus, as determined using 16S rDNA sequencing. Arch. Microbiol. 166, 394398.
  • [68]
    Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307317.
  • [69]
    Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D., Peduzzi, R. (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl. Environ. Microbiol. 66, 820824.
  • [70]
    Janssen, P.H., Schuhmann, A., Bak, F., Liesack, W. (1996) Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol. 166, 184192.
  • [71]
    von Wintzingerode, F., Selent, B., Hegemann, W., Gobel, U.B. (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 65, 283286.
  • [72]
    Liles, M.R., Manske, B.F., Bintrim, S.B., Handelsman, J., Goodman, R.M. (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69, 26842691.
  • [73]
    Nübel, U., Bateson, M.M., Madigan, M.T., Kuhl, M., Ward, D.M. (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl. Environ. Microbiol. 67, 43654371.
  • [74]
    Skirnisdottir, S., Hreggvidsson, G.O., Hjorleifsdottir, S., Marteinsson, V.T., Petursdottir, S.K., Holst, O., Kristjansson, J.K. (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66, 28352841.
  • [75]
    Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K.H., Horikoshi, K. (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol. Lett. 218, 167174.
  • [76]
    Finster, K., Liesack, W., Tindall, B.J. (1997) Sulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium. Int. J. Syst. Bacteriol. 47, 12121217.
  • [77]
    Gevertz, D., Telang, A.J., Voordouw, G., Jenneman, G.E. (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66, 24912501.
  • [78]
    Campbell, B.J., Jeanthon, C., Kostka, J.E., Luther, G.W. III, Cary, S.C. (2001) Growth and phylogenetic properties of novel bacteria belonging to the Epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl. Environ. Microbiol. 67, 45664572.
  • [79]
    Stolz, J.F., Ellis, D.J., Blum, J.S., Ahmann, D., Lovley, D.R., Oremland, R.S. (1999) Sulfurospirillum barnsii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49, 11771180.
  • [80]
    Nemati, M., Jenneman, G.E., Voordouw, G. (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol. Bioeng. 74, 424434.
  • [81]
    Alain, K., Quérellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguenes, G., Cueff, V., Cambon-Bonavita, M.-A. (2002) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52, 13171323.
  • [82]
    Miroshnichenko, M.L., Kostrikina, N.A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E., Bonch-Osmolovskaya, E.A. (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52, 12991304.
  • [83]
    Pedersen, K., Hallbeck, L., Arlinger, J., Erlandson, A.C., Jahromi, N. (1997) Investigations of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. J. Microbiol. Met. 30, 179192.
  • [84]
    Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., Spear, J.R., Krumholz, L.R. (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl. Environ. Microbiol. 69, 56095621.
  • [85]
    Voordouw, G., Armstrong, S.M., Reimer, M.F., Fouts, B., Telang, A.J., Shen, Y., Gevertz, D. (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62, 16231629.
  • [86]
    Li, L., Kato, C., Horikoshi, K. (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8, 659667.
  • [87]
    Fenchel, T., Glud, R.N. (1998) Veil architecture in a sulphide-oxidizing bacterium enhances countercurrent flux. Nature 394, 367369.
  • [88]
    Todorov, J.R., Chistoserdov, A.Y., Aller, J.Y. (2000) Molecular analysis of microbial communities in mobile deltaic muds of Southeastern Papua New Guinea. FEMS Microbiol. Ecol. 33, 147155.
  • [89]
    Madrid, V.M., Taylor, G.T., Scranton, M.I., Chistoserdov, A.Y. (2001) Phylogenetic diversity of bacterial and Archaeal communities in the anoxic zone of the Cariaco Basin. Appl. Environ. Microbiol. 67, 16631674.
  • [90]
    Moyer, C.L., Dobbs, F.C., Karl, D.M. (1995) Phylogenetic diversity of the bacterial communities from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61, 15551562.
  • [91]
    Muyzer, G., Teske, A., Wirsen, C.O., Jannasch, H.W. (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent sample by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164, 165172.
  • [92]
    Polz, M.F., Cavanaugh, C.M. (1995) Dominance of one bacterial phylotype at a mid-Atlantic ridge hydrothermal vent site. Proc. Nat. Acad. Sci. USA 92, 72327236.
  • [93]
    Brinkhoff, T., Siebert, S.M., Kuever, J., Muyzer, G. (1999) Distribution and diversity of Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl. Environ. Microbiol. 65, 38433849.
  • [94]
    Reysenbach, A.-L., Longnecker, K., Kirshtein, J. (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 37983806.
  • [95]
    Corre, E., Reysenbach, A.-L., Prieur, D. (2001) ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205, 329335.
  • [96]
    Haddad, A., Camacho, F., Durand, P., Cary, S.C. (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl. Environ. Microbiol. 61, 16791687.
  • [97]
    Cary, S.C., Cottrell, M.T., Stein, J.L., Camacho, F., Desbruyeres, D. (1997) Molecular identification and localization of a filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63, 11241130.
  • [98]
    Naganuma, T., Kato, C., Hirayama, H., Moriyama, N., Hashimoto, J., Horikoshi, K. (1997) Intracellular occurrence of ε-Proteobacterial 16S rDNA sequences in the vestimentiferan trophosome. J. Oceanogr. 53, 193197.
  • [99]
    Alain, K., Olagnon, M., Desbruyeres, D., Page, A., Barbier, G., Juniper, S.K., Quérellou, J., Cambon-Bonavita, M.-A. (2002) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol. Ecol. 42, 463476.
  • [100]
    López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961976.
  • [101]
    Engberg, J., On, S.L., Harrington, C.S., Gerner-Smidt, P. (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. J. Clinical Microbiol. 38, 286291.
  • [102]
    On, S.L.W. (2001) Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. J. Appl. Microbiol. 90, 1S15S.
  • [103]
    Howarth, R., Unz, R.F., Seviour, E.M., Seviour, R.J., Blackall, L.L., Pickup, R.W., Jones, J.G., Yaguchi, J., Head, I.M. (1999) Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int. J. Syst. Bacteriol. 49, 18171827.
  • [104]
    Wagner, M., Amann, R., Kåmpfer, P., Assmus, B., Hartmann, A., Hutzler, P., Springer, N., Schleifer, K.-H. (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 17, 405417.
  • [105]
    Taylor, C.D., Wirsen, C.O., Gaill, F. (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 22532255.
  • [106]
    Wirsen, C.O., Sievert, S.M., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A.T. L.T DeLong, E.F., Taylor, C.D. (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. 68, 316325.
  • [107]
    Su, L.-H., Ou, J.T., Leu, H.-S., Chiang, P.-C., Chiu, Y.-P., Chia, J.-H., Kuo, A.-J., Chiu, C.-H., Chu, C., Wu, T.-L., Sun, C.-F., Riley, T.V., Chang, B.J., Group, T.I.C. (2003) Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J. Clin. Microbiol. 41, 47264732.
  • [108]
    Francis, C.A., Obraztsova, A.Y., Tebo, B.M. (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl. Environ. Microbiol. 66, 543548.
  • [109]
    Engel, A.S., Stern, L.A., Porter, M.L., Bennett, P.C. Sulfur cycling and nutrient spiraling in karst. Geol. Soc. Am. Abstracts with Program. 34, (2002) 223
  • [110]
    Head, I.M., Saunders, J.R., Pickup, R.W. (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 121.
  • [111]
    von Wintzingerode, F., Gobel, U.B., Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213229.
  • [112]
    Brown, A.V., Pierson, W.K. & Brown, K.B. (1994) Organic carbon and the payoff-risk relationship in cave ecosystems. In: 2nd International Conference on Ground Water Ecology, pp. 67–76. US Environmental Protection Agency
  • [113]
    Coplen, T.B., Hopple, J.A., Böhlke, J.K., Peiser, H.S., Rieder, S.E., Krouse, H.R., Rosman, K.J.R., Ding, T., Vocke, R.D., Jr., Révész, K.M., Lamberty, A., Taylor, P. & De Bièvre, P. (2002) Compilation of Minimum and Maximum Isotopic Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. US Geol. Survey. Reston, VA
  • [114]
    Paul, E.A., Clark, F.E. Soil Microbiology and Biochemistry. (1996) Academic Press, San Diego, CA. 340 pp
  • [115]
    Gregory, S.V. (1983) Plant–herbivore interactions in stream ecosystems. In: Stream Ecology (Barnes, J.R., Minshall, G.W., Eds.), pp.157–190 Plenum Press, New York, NY.
  • [116]
    Gugliandolo, C., Maugeri, T.L. (1998) Temporal variations in heterotrophic mesophilic bacteria from a marine shallow hydrothermal vent off the Island of Volcano (Eolian Islands, Italy). Microb. Ecol. 36, 1322.
  • [117]
    Turner, R.D., Clench, W.J. (1974) A new blind Physa from Wyoming with notes on its adaptation to the cave environment. The Nautilus 88, 8085.
  • [118]
    Robinson, J.J., Cavanaugh, C.M. (1995) Expression of form I and form II Rubisco in chemoautotrophic symbioses: implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 14961502.
  • [119]
    Preuß, A., Schauder, R., Fuchs, G. (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z. Naturforsch. 44c, 397402.
  • [120]
    Simenstad, C.A., Duggins, D.O., Quay, P.D. (1993) High turnover of inorganic carbon in kelp habitats as a source of δ13C variability in marine food webs. Mar. Biol. 116, 147160.
  • [121]
    France, R., Cattaneo, A. (1998) δ13C variability of benthic algae: effects of water colour via modulation by stream current. Fresh. Biol. 39, 617622.
  • [122]
    Newbold, J.D., Mulholland, P.J., Elwood, J.W., O'Neill, R.V. (1982) Organic carbon spiralling in stream ecosystems. Oikos 38, 266272.
  • [123]
    Lee, N., Nielsen, P.H., Andreasen, K.H., Juretschko, S., Nielsen, J.L., Schleifer, K.-H., Wagner, M. (1999) Combination of fluorescent in situ hybridization and microautoradiography: a new tool for structure-function analysis in microbial ecology. Appl. Environ. Microbiol. 65, 12891297.