• [1]
    Gray, N.D., Head, I.M. (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3, 481492.
  • [2]
    Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J., Cappenberg, T.E. (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labeling of biomarkers. Nature 392, 801805.
  • [3]
    Boschker, H.T.S., de Graaf, W., Koster, M., Meyer-Reil, L.-A., Cappenberg, T.E. (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol. 35, 97103.
  • [4]
    Radajewski, S., Ineson, P., Parekh, N.R., Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403, 646649.
  • [5]
    Manefield, M., Whiteley, A.S., Griffiths, R.I., Bailey, M.J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny. Appl. Environ. Microbiol. 68, 53675373.
  • [6]
    Lechevalier, H., Lechevalier, M.P. Chemotaxonomic use of lipids – an overview. Ratledge, C., Wilkinson, S.G., Eds. Microbial Lipids. Vol. 1. (1998) Academic Press, London. 869–902.
  • [7]
    Pombo, S.A., Pelz, O., Schroth, M.H., Zeyer, J. (2002) Field-scale C-13-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol. Ecol. 41, 259267.
  • [8]
    von Keitz, V., Schramm, A., Altendorf, K., Lipski, A. (1999) Characterization of microbial communities of biofilters by phospholipid fatty acid analysis and rRNA targeted oligonucleotide probes. System. Appl. Microbiol. 22, 626634.
  • [9]
    Stephen, J.R., Chang, Y.-J., Gan, Y.D., Peacock, A., Pfiffner, S.M., Barcelona, M.J., White, D.C., MacNaughton, S.J. (1999) Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ. Microbiol. 1, 231241.
  • [10]
    Pelz, O., Chatzinotas, A., Zarda-Hess, A., Abraham, W.-R., Zeyer, J. (2001) Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol. Ecol. 38, 121131.
  • [11]
    Dowling, N.J.E., Widdel, F., White, D.C. (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J. Gen. Microbiol. 132, 18151825.
  • [12]
    Kohring, L.L., Ringelberg, D.B., Devereux, R., Stahl, D.A., Mittelman, M.W., White, D.C. (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119, 303308.
  • [13]
    Vainshtein, M., Hippe, H., Kroppenstedt, R.M. (1992) Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulphate-reducing bacteria. System. Appl. Microbiol. 15, 554566.
  • [14]
    Madsen, E.L. (1998) Epistemology of environmental microbiology. Environ. Sci. Technol. 32, 429439.
  • [15]
    Middelburg, J.J., Barranget, C., Boschker, H.T.S., Herman, P.M.J., Moens, T., Heip, C.H.R. (2000) The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol. Oceanogr. 45, 12241234.
  • [16]
    Padmanabhan, P., Padmanabhan, S., DeRito, C., Gray, A., Gannon, D., Snape, J.R., Tsai, C.S., Park, W., Jeon, C., Madsen, E.L. (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 69, 16141622.
  • [17]
    Haggerty, R., Schroth, M.H., Istok, J.D. (1998) Simplified method of Push-Pull test data analysis for determining in situ reaction rate coefficients. Ground Water 36, 314324.
  • [18]
    Bolliger, C., Höhener, P., Hunkeler, D., Håberli, K., Zeyer, J. (1999) Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes. Biodegradation 10, 201217.
  • [19]
    Bolliger, C., Schönholzer, F., Schroth, M.H., Hahn, D., Bernasconi, S., Zeyer, J. (2000) Characterizing intrinsic bioremediation in a petroleum hydrocarbon-contaminated aquifer by combined chemical, isotopic and biological analyses. Bioremediation Journal 4, 359371.
  • [20]
    Stumm, W., Morgan, J.J. Aquatic Chemistry - An introduction emphasizing chemical equilibria in natural waters. (1981) Wiley-Interscience, New York. p. 780
  • [21]
    Bligh, E.G., Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.
  • [22]
    Abraham, W.-R., Hesse, C., Pelz, O. (1998) Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64, 42024209.
  • [23]
    Fredrickson, H.L., Cappenberg, T.E., Leeuw, J.W.d. (1986) Polar lipid ester-linked fatty acid composition of Lake Vechten seston: an ecological application of lipid analysis. FEMS Microbiol. Lett. 38, 381396.
  • [24]
    Boschker, H.T.S., Middelburg, J.J. (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40, 8595.
  • [25]
    Zarda, B., Hahn, D., Chatzinotas, A., Schönhuber, W., Neef, A., Amann, R.I., Zeyer, J. (1997) Analysis of bacterial community structure in bulk soil by an in situ hybridization. Arch. Microbiol. 168, 185192.
  • [26]
    Amann, R.I., Krumholz, L.R., Stahl, D.A. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762770.
  • [27]
    Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 19191925.
  • [28]
    Rabus, R., Fukui, M., Wilkes, H., Widdel, F. (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62, 36053613.
  • [29]
    Manz, W., Eisenbrecher, M., Neu, T.R., Szewzyk, U. (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25, 4361.
  • [30]
    Stahl, D.A., Amann, R. (1991) Development and application of nucleic acid probes in bacterial systematics. In: Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E., Goodfellow, M., Eds.), pp.205–248 Wiley, Chichester, England.
  • [31]
    Urmann, K., Gonzalez-Gil, G., Schroth, M.H., Hofer, M. and Zeyer, J. (2004) New field method: gas push–pull test for the in-situ quantification of microbial activities in the vadose zone. Environ. Sci. Technol. Submitted
  • [32]
    Kleikemper, J., Schroth, M.H., Sigler, W.V., Schmucki, M., Bernasconi, S.M., Zeyer, J. (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 68, 15161523.
  • [33]
    Schroth, M.H., Kleikemper, J., Bolliger, C., Zeyer, J. (2001) Quantification of microbial sulphate reduction in a petroleum-contaminated aquifer. Land Contamination and Reclamation 9, 293300.
  • [34]
    Chapelle, F.H., Bradley, P.M., Lovley, D.R., Vroblesky, D.A. (1996) Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water 34, 691698.
  • [35]
    Lu, G.P., Clement, T.P., Zheng, C.M., Wiedemeier, T.H. (1999) Natural attenuation of BTEX compounds: Model development and field-scale application. Ground Water 37, 707717.
  • [36]
    Schroth, M.H., Kleikemper, J., Bolliger, C., Bernasconi, S.M., Zeyer, J. (2001) In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. J. Contam. Hydrol. 51, 179195.
  • [37]
    Cozzarelli, I.M., Suflita, J.M., Ulrich, G.A., Harris, S.H., Scholl, M.A., Schlottmann, J.L., Christenson, S. (2000) Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate. Environ. Sci. Technol. 34, 40254033.
  • [38]
    Vroblesky, D.A., Bradley, P.M., Chapelle, F.H. (1996) Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer. Environ. Sci. Technol. 30, 13771381.
  • [39]
    Jakobsen, R., Postma, D. (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochim. Cosmochim. Acta 63, 137151.
  • [40]
    Ludvigsen, L., Albrechtsen, H.-J., Heron, G., Bjerg, P.L., Christensen, T.H. (1998) Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). J. Contam. Hydrol. 33, 273291.
  • [41]
    Hristova, K.R., Mau, M., Zheng, D., Aminov, R.I., Mackie, R.I., Gaskins, H.R., Raskin, L. (2000) Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ. Microbiol. 2, 143159.
  • [42]
    Altenschmidt, U., Fuchs, G. (1992) Anaerobic toluene oxidation to benzyl alcohol and benzaldehyde in a denitrifying Pseudomonas strain. J. Bacteriol. 174, 48604862.
  • [43]
    Beller, H.R., Spormann, A.M., Sharma, P.K., Cole, J.R., Reinhard, M. (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62, 11881196.
  • [44]
    Taylor, J., Parkes, R.J. (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 33033309.
  • [45]
    Alfreider, A., Krossbacher, M., Psenner, R. (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res. 31, 832840.
  • [46]
    Bekins, B.A., Godsy, E.M., Warren, E. (1999) Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol. 37, 263275.
  • [47]
    Griebler, C., Mindl, B., Slezak, D., Geiger-Kaiser, M. (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 28, 117129.
  • [48]
    Kleikemper, J., Pelz, O., Schroth, M.H., Zeyer, J. (2002) Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms. FEMS Microbiol. Ecol. 42, 109118.
  • [49]
    Kleikemper, J., Pombo, S.A., Schroth, M.H., Sigler, W.V., Pesaro, M. and Zeyer, J. (2004) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. In press