• [1]
    J.C. Priscu B.C. Christner Earth’ s icy biosphere A. Bull Microbial Diversity and Bioprospecting 2004 American Society for Microbiology Washington, DC 130 145.
  • [2]
    Vincent, W.F., Gibson, J.A., Pienitz, R., Villeneuve, V., Broady, P.A., Hamilton, P.B., Howard-Williams, C. (2000) Ice shelf microbial ecosystems in the High Arctic and implications for life on snowball Earth. Naturwissenschaften 87, 137141.
  • [3]
    Vincent, W.F., Mueller, D.R., Bonilla, S. (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48, 103112.
  • [4]
    W.F. Vincent Cyanobacterial dominance in the polar regions B.A. Whitton M. Potts The Ecology of Cyanobacteria 2000 Kluwer Academic Press The Netherlands 321 340.
  • [5]
    Tang, E.P.Y., Tremblay, R., Vincent, W.F. (1997) Cyanobacteria dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature. J. Phycol. 33, 171181.
  • [6]
    Nadeau, T.L., Castenholz, R.W. (2000) Characterization of psychrophilic oscillatorians (Cyanobacteria) from antarctic meltwater ponds. J. Phycol. 36, 914923.
  • [7]
    Ehling-Schulz, M., Scherer, S. (1999) UV protection in Cyanobacteria. Eur. J. Phycol. 34, 329338.
  • [8]
    Cockell, C.S., Knowland, J. (1999) Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74, 311345.
  • [9]
    Roos, J.C., Vincent, W.F. (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34, 118125.
  • [10]
    W.F. Vincent D.R. Mueller P. Van Hove C. Howard-Willams Glacial periods on early Earth and implications for the evolution of life J. Seckbach Origins: Genesis, Evolution and Diversity of Life 2004 Kluwer Academic Publishers Dortrecht 481 501.
  • [11]
    M.O. Jeffries Ellesmere Island ice shelves and ice islands R.S. Williams J.G. Ferrigno Satellite Image Atlas of Glaciers of the World: Glaciers of North America 2002 United States Geological Survey Washington J147 J164.
  • [12]
    Debenham, F. (1920) A new mode of transportation by ice: the raised marine muds of South Victoria Land. Q. J. Geol. Soc. 75, 5176.
  • [13]
    Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 132.
  • [14]
    Sakshaug, E., Bricaud, A., Dandonneau, Y., Falkowski, P.G., Kiefer, D.A., Legendre, L., Morel, A., Parslow, J., Takahashi, M. (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankton Res. 19, 16371670.
  • [15]
    Platt, T., Geallegos, C., Harrison, W.G. (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res 38, 687701.
  • [16]
    D.L. Kirchman Leucine incorporation as a measure of biomass production by heterotrophic bacteria P.F. Kemp B.F. Sherr E.B. Sherr J.J. Cole Handbook of Methods in Aquatic Microbial Ecology 1993 Lewis Pub. Boca Raton 509 512.
  • [17]
    JGOFS, 1996. Protocols for Joint Global Ocean Flux Study Core Measurements, pp. 171–177, International Ocean Commission, Bergen, Norway
  • [18]
    J.D.H. Strickland T.R. Parsons Practicle Seawater Analysis 2nd edn. 1972 Fisheries Research Board Canada, Ottawa.
  • [19]
    Villeneuve, V., 2000. Algues benthiques du haut Arctique canadien: microhabitat et évaluation des facteurs de contrôle chimiques, M.Sc. Thesis, Department of Biology, Laval University, Quebec, QC
  • [20]
    Zapata, M., Rodriguez, F., Garrido, J.L. (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine containing mobile phases. Mar. Ecol. Prog. Ser. 195, 2945.
  • [21]
    Hertzberg, S., Liaan-Jensen, S. (1969) The structure of Oscillaxanthin. Phytochemistry 8, 12811292.
  • [22]
    S.W. Jeffrey R.F.C. Mantoura S.W. Wright Phytoplankton Pigments in Oceanography 1997 SCOR UNESCO Paris.
  • [23]
    Garcia-Pichel, F., Sherry, N.D., Castenholz, R.W. (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56, 1723.
  • [24]
    Shick, J.M., Romaine-Lioud, S., Ferrier-Pagès, C., Gattuso, J.P. (1999) Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol. Oceanogr. 44, 16671682.
  • [25]
    Sommaruga, R., Garcia-Pichel, F. (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Archiv. Hydrobiol. 144, 255269.
  • [26]
    Böhm, G.A., Pfeiderer, W., Böger, P., Scherer, S. (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 270, 85368539.
  • [27]
    Schülter, L., Garde, K., Kaas, H. (2004) Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea. Mar. Ecol. Prog. Ser. 275, 6978.
  • [28]
    Francis, G.W., Hertzberg, S., Andersen, K., Liaan-Jensen, S. (1970) New carotenoid glycosides from Oscillatoria limosa. Phytochemistry 9, 629635.
  • [29]
    T.W. Goodwin The Biochemistry of the Carotenoids 2nd edn. 1980 Chapman and Hall London New York.
  • [30]
    Fujii, R., Chen, C.-H., Mizoguchi, T., Koyama, Y. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canathaxanthin, β-apo-8′-carotenal and spheroidene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 54, 1998, 727743.
  • [31]
    Karentz, D., McEuen, F.S., Land, M.C., Dunlap, W.C. (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Marine Biol. 108, 157166.
  • [32]
    Hill, D.R., Peat, A., Potts, M. (1994) Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria). Protoplasma 182, 126148.
  • [33]
    Ehling-Schulz, M., Bilger, W., Scherer, S. (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179, 19401945.
  • [34]
    Ito, S., Hirata, Y. (1977) Isolation and structure of a mycosporine from the zoanthid. Tetrahed. Lett. 18, 24292430.
  • [35]
    Hill, D.R., Hladun, S.L., Scherer, S., Potts, M. (1994) Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-β-d-xylanxylanohydrolase activity. J. Biol. Chem. 269, 77267734.
  • [36]
    Howard-Williams, C., Vincent, C.L., Broady, P.A., Vincent, W.F. (1986) Antarctic stream ecosystems: variability in environmental properties and algal community structure. Int. Rev. ges. Hydrobiol. 71, 511544.
  • [37]
    Howard-Williams, C., Vincent, W.F. (1989) Microbial communities in southern Victoria Land streams (Antarctica). 1. Photosynthesis. Hydrobiologia 172, 2738.
  • [38]
    Vincent, W.F., Castenholz, R.W., Downes, M.T., Howard-Williams, C. (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J. Phycol. 29, 745755.
  • [39]
    I. Hawes C. Howard-Williams Primary production processes in streams of the McMurdo Dry Valleys, Antarctica J.C. Priscu Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica 1998 American Geophysical Union Washington 129 140.
  • [40]
    Vincent, W.F., Howard-Williams, C. (1989) Microbial communities in southern Victoria Land streams (Antarctica). 2. The effects of low temperature. Hydrobiologia 172, 3949.
  • [41]
    Tuominen, L. (1995) Comparison of leucine uptake methods and a thymidine incorporation method for measuring bacterial activity in sediment. J. Microbiol. Meth. 24, 125134.
  • [42]
    R.T. Bell Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine P.F. Kemp B.F. Sherr E.B. Sherr J.J. Cole Handbook of Methods in Aquatic Microbial Ecology 1993 Lewis Publication Boca Raton 495 504.
  • [43]
    Fischer, H., Pusch, M. (1999) Use of the (14C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Appl. Environ. Microbiol. 65, 44114418.
  • [44]
    D.L. Kirchman Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production P.F. Kemp B.F. Sherr E.B. Sherr J.J. Cole Handbook of Methods in Aquatic Microbial Ecology 1993 Lewis Publication Boca Raton 513 517.
  • [45]
    D.L. Moorhead W.S. Davis R.A. Wharton Carbon dynamics of aquatic microbial mats in the Antarctic dry valleys: a modelling synthesis W.B. Lyons C. Howard-Williams I. Hawes Ecosystem Processes in Antarctic ice-free Landscapes 1997 A.A. Balkema Rotterdam, Netherlands 181 196.
  • [46]
    Serson, H.V. Mass balance of the Ward Hunt Ice Rise and Ice Shelf: an 18-year record, 1979, Defence Establishment Pacific, Victoria, Victoria, BC pp. 14.
  • [47]
    Lister, H. Heat and mass balance at the surface of the Ward Hunt Ice Shelf, 1960, 1962, Arctic Institute of North America, Washington, DC, pp. 54.
  • [48]
    Davison, I. (1990) Environmental effects on algal photosynthesis: temperature. J. Phycol. 27, 28.
  • [49]
    P.G. Falkowski J.A. Raven Aquatic Photosynthesis 1997 Blackwell Science Malden, Mass.
  • [50]
    Yallop, M.L., Dewinder, B., Paterson, D.M., Stal, L.J. (1994) Comparative structure, primary production and biogenic stabilization of cohesive and noncohesive marine-sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci. 39, 565582.
  • [51]
    L.J. Stal Microbial mats in coastal environment L.J. Stal P. Caumette Microbial mats 1994 Springer-Verlag Berlin 21 32.
  • [52]
    Sorensen, K., Canfield, D., Oren, A. (2004) Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 16081616.
  • [53]
    Wieland, A., Kuhl, M. (2000) Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Marine Biol. 137, 7185.
  • [54]
    Hawes, I., Smith, R., Howard-Williams, C., Schwarz, A.M. (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf. Antarctica. Ant. Sci. 11, 198208.
  • [55]
    Hawes, I., Howard-Williams, C., Vincent, W.F. (1992) Desiccation and recovery of cyanobacterial mats. Polar Biol. 12, 587594.
  • [56]
    A.W. Decho Exopolymers in microbial mats: Assessing their adaptive role L.J. Stal P. Caumette Microbial Mats 1994 Springer-Verlag Berlin 215 219.
  • [57]
    Behrenfeld, M.J., Prasil, O., Babin, M., Bruyant, F. (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J. Phycol. 40, 425.
  • [58]
    Crary, A.P., Kulp, J.L., Marshall, E.W. (1955) Evidences of climatic change from ice island studies. Science 122, 11711173.
  • [59]
    Howard-Williams, C., Pridmore, R.D., Downes, M.T., Vincent, W.F. (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf. Antarctica. Ant. Sci. 1, 125131.
  • [60]
    C. Howard-Williams R.D. Pridmore P.A. Broady W.F. Vincent Environmental and biological variability in the McMurdo Ice Shelf ecosystem K.R. Kerry G. Hempel Antarctic Ecosystems: Ecological Change and Conservation 1990 Springer-Verlag Berlin 23 31.
  • [61]
    J. Hirschberg D. Chamovitz Carotenoids in cyanobacteria D.A. Bryant The Molecular Biology of Cyanobacteria 1994 Kluwer Academic Publishers Dordrecht 559 579.
  • [62]
    Vincent, W.F., Downes, M.T., Castenholz, R.W., Howard-Williams, C. (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur. J. Phycol. 28, 213221.
  • [63]
    Villeneuve, V., Vincent, W.F., and Komárek, J., 2001. Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake, Vol. 123, Nova Hedwigia, Beiheft, pp. 199–224
  • [64]
    Sabbe, K., Hodgson, D., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K., Vyverman, W. (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biol. 49, 296319.
  • [65]
    Garcia-Pichel, F., Castenholz, R.W. (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395409.
  • [66]
    Neale, P.J., Banaszak, A.T., Jarriel, C.R. (1998) Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J. Phycol. 34, 928938.
  • [67]
    Garcia-Pichel, F., Castenholz, R. (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170176.
  • [68]
    Scherer, S., Chen, T.W., Böger, P. (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol. 88, 10551057.
  • [69]
    Garcia-Pichel, F., Castenholz, R. (1993) Occurrence of UV-absorbing mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening ability. Appl. Environ. Microbiol. 59, 163169.
  • [70]
    Dunlap, W.C., Yamamoto, Y. (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 112B, 105114.
  • [71]
    W.F. Vincent A. Quesada Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats B. Battaglia J. Valencia D. Walton Antarctic Communities: Species, Structure and Survival 1997 Cambridge University Press Cambridge 388 395.