SEARCH

SEARCH BY CITATION

References

  • [1]
    Subak, S., Raskin, P., von Hippel, D. (1993) National greenhouse gas accounts: current anthropogenic sources and sinks. Climate Change 25, 1558.
  • [2]
    M.A.K. Khalil M. Shearer Sources of methane M.A. Khalil Atmospheric Methane: Sources, Sinks, and Role in Global Change 1993 Springer-Verlag Berlin 180 197.
  • [3]
    Doorn, M.R.J., and Barlaz, M.A. (1995) Estimate of global methane emissions from landfills and open drumps. EPA-600/R-95-019. US EPA Office of Research and Development, Washington, DC
  • [4]
    Fritz, J., Link, U., Braun, R. (2001) Environmental impacts of biobased/biodegradable packaging. Starch/Stärke 53, 105109.
  • [5]
    Ayalon, O., Avnimenelech, Y. (2001) Solid waste treatment as a high-priority and low cost alternative for greenhouse gas mitigation. Environ. Manage. 27, 697704.
  • [6]
    W. Weißenfels Verfahrenstechnik der aeroben Behandlung organischer Abfälle P. Kämpfer W.D. Weißenfels Biologische Behandlung organischer Abfälle 2001 Springer-Verlag Berlin Heidelberg 81 98.
  • [7]
    Schattner-Schmidt, S., Helm, M., Gronauer, A., Hellmann, B. Composting biogenic wastes. Landtechnik. 50, 1995, 364..
  • [8]
    Hellmann, B., Zelles, L., Palojarvi, A., Bai, Q. (1997) Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Appl. Microbiol. 63, 10111018.
  • [9]
    Hellebrand, H.J. (1998) Emission of nitrous oxide and other trace gases during composting of grass and green waste. J. Agric. Engng. Res. 69, 365375.
  • [10]
    Beck-Friis, B., Pell, M., Sonesson, U., Jönsson, H., Kirchmann, H. (2000) Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environ. Monit. Assessm. 62, 317331.
  • [11]
    Sommer, S.G., Moller, H.B. (2000) Emission of greenhouse gases during composting of deep litter from pig production – effect of straw content. J. Agric. Sci. 134, 327335.
  • [12]
    He, Y., Inamori, Y., Mizuochi, M., Kong, H., Iwami, N., Sun, T. (2000) Measurements of N2O and CH4 from the aerated composting of food waste. Sci. Tot. Environm. 254, 6574.
  • [13]
    Hellmann, B. (1995) Freisetzung Klimarelevanter Spurengase in Bereichen mit hoher Akkumulation von Biomassen. Zeller Verlag, Osnabrück, ISBN 3-535-02473-0
  • [14]
    Derikx, P.J.L., de Jong, G.A.H., Opden Camp, H.J.M., van der Drift, C., van Griesven, L.J.L.D., Vogels, G.D. (1989) Isolation and characterization of thermophilic methanogenic bacteria from mushroom compost. FEMS Microbiol. Ecol. 62, 251258.
  • [15]
    Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov, N.S., Tiedje, J.M. (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. Micr. 50, 955969.
  • [16]
    Dedysh, S.N., Horz, H.P., Dunfield, P.F, Liesack, W. (2001) A novel pmoA lineage represented by the acidophilic methanotrophic bacterium Methylocapsa acidophila B2. Arch. Microbiol. 177, 117121.
  • [17]
    Bowman, J.P., Sly, L.I., Nichols, P.D., Hayward, A.C. (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Evol. Microbiol. 43, 735753.
  • [18]
    Hanson, R.S., Hanson, T.E. (1996) Methanotrophic bacteria. Microbiol. Rev. 60, 439471.
  • [19]
    Bowman, J. The methanotrophs – the families Methylococcaceae and Methylocystaceae. The Prokaryotes: A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications 2000, Springer-Verlag, New York
  • [20]
    Holzapfel-Pschorn, A., Conrad, R., Seiler, W. (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31, 343351.
  • [21]
    Denier-VanderGon, H.A.C., Neue, H.U. (1996) Oxidation of methane in the rhizosphere of rice plants. Biol. Fertil. Soils 22, 359366.
  • [22]
    Conrad, R., Rothfuss, F. (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils 12, 2832.
  • [23]
    Bodelier, P.L.E., Frenzel, P. (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol. 65, 18261833.
  • [24]
    Jäckel, U., Schnell, S., Conrad, R. (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol. Biochem. 33, 965971.
  • [25]
    Humer, M., Lechner, P. (1999) Alternative approach to the eliminiation of greenhouse gases from old landfills. Waste Manage. Res. 17, 443452.
  • [26]
    de Visscher, A., Schippers, M., van Cleemput, O. (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol. Fertil. Soils 33, 231237.
  • [27]
    Pel, R., Oldenhuis, R., Brand, W., Vos, A., Gottschal, J.C., Zwart, K.B. (1997) Stable-isotope analysis of a combined nitrification-denitrification sustained by thermophilic methanotrophs under low-oxygen conditions. Appl. Environ. Microbiol. 2, 474481.
  • [28]
    Stralis-Pavese, N., Sessitsch, A., Weilharter, A., Reichenauer, T., Riesing, J., Csontos, J., Murrell, C., Bodrossy, L. (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6, 347363.
  • [29]
    J.K. Kristjansson K.O. Stetter Thermophilic bacteria J.K. Kristjansson Thermophilic Bacteria 1992 CRC Press Boca Raton, FL, USA 1 18.
  • [30]
    J. Wiegel The obligatly anaerobic thermophilic bacteria J.K. Kristjansson Thermophilic Bacteria 1992 CRC Press Boca Raton, FL, USA 105 184.
  • [31]
    Trotsenko, Y.A., Kmelinina, V.N. (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177, 123131.
  • [32]
    Jäckel, U., Schnell, S., Conrad, R. (2004) Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil. Soil Biol. Biochem. 36, 835840.
  • [33]
    Ishizuka, S., Tsuruta, H., Murdiyarso, D. (2002) Methane oxidation in Japanese forest soils. Soil Biol. Biochem. 32, 769777.
  • [34]
    Keller, M., Reiners, W.A. (1994) Soil atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in Atlantic lowlands of Costa Rica. Global Biogeochem. Cycl. 8, 399409.
  • [35]
    Campbell, G.S. (1985) Soil Physics wih BASIC. Transport Models for Soil–Plant systems. Devel. Soil Sci. 14, Elsevier, Amsterdam
  • [36]
    Billings, S.A., Richter, D.D., Yarie, J. (2000) Sensitivity of soil methane fluxes to reduced precipitation in boreal forest soils. Soil Biol. Biochem. 32, 14311441.
  • [37]
    Schacht, B., Neef, A., Kämpfer, P. (1999) Mikrobiologische Charakterisierung unterschiedlich genutzter landwirtschaftlicher Böden in peripheren Regionen. Land use Devel. 40, 234239.
  • [38]
    de Man, J.C. (1983) MPN-Tables, Corrected. Eur. J. Appl. Microbiol. Biotechnol. 17, 301305.
  • [39]
    Heyer, J., Malashenko, Y., Berger, U., Budkova, E. (1984) Verbreitung methanotropher Bakterien. Z. Allg. Mikrobiol. 24, 725744.
  • [40]
    Leadbetter, R.E., Foster, J.W. (1958) Studies on some methane-utilizing bacteria. Arch. Microbiol. 30, 91118.
  • [41]
    P. Gerhardt R.G.E. Murray W.A. Wood N.R. Krieg Methods for general and molecular bacteriology 1994 American Society for Microbiology Washington DC.
  • [42]
    Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M. (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinform, vol. 17(12), pp. 1244–1245
  • [43]
    Jäckel, U., and Kämpfer, P. (2003) Die Mikrobiologie der Kompostierung. In: Hösel G., Bilitewski, B., Schenkel, W., Schnurer H. (Eds.) Müllhandbuch. Erich Schmidt Verlag, Berlin, Germany, 5,5210, pp. 1–24
  • [44]
    Beck-Friis, B., Smars, S., Jönsson, H., Eklind, Y., Kirchmann, H. (2003) Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics. Compost. Sci. Utiliz. 11, 4150.
  • [45]
    Niese, G. (1978) Über die Kompostierung von Siedlungsabfällen unter Berücksichtigung mikrobieller Gesichtspunkte. Grundl. Landtechn. 28, 7581.
  • [46]
    Bodrossy, L., Murerell, J.C., Dalton, H., Kalman, M., Puskas, L.G., Kovacs, K.L. (1995) Heat-tolerant methanotophic bacteria from the hot-water effluent of a natural-gas field. Appl. Environ. Microbiol. 61, 35493555.
  • [47]
    Bodrossy, L., Kovacs, K.L., McDonal, I.R., Murrell, J.C. (1999) A novel thermophilic methane-oxidizing γ-Proteobacterium. FEMS Microbiol. Ecol. 170, 335341.
  • [48]
    Sukesan, S., Watwood, M.E. (1998) Effects of hydrocarbon enrichment on trichloroethylene biodegradation and microbial populations in mature compost. J. Appl. Microbiol. 85, 635642.
  • [49]
    Costello, A.M., Auman, A.J., Macalady, J.L., Scow, K.M., Lidstrom, M.E. (2002) Estimation of methanotoph abundances in a freshwater lake sediment. Environ. Microbiol. 4, 443450.
  • [50]
    Ishii, K., Fukui, M., Takii, S. (2000) Microbial succession during a composting process as evaluated by denatruing grandient gel electrophoresis analysis. J. Appl. Microbiol. 89, 768777.
  • [51]
    de Bont, J.A.M., Lee, K.K., Bouldin, D.F. (1978) Bacterial oxidation of methane in a rice paddy. Ecol. Bull. 26, 9196.
  • [52]
    Bodrossy, L., Holmes, E.M., Holmes, A.J., Kovacs, K.L., Murell, J.C. (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Mircrobiol. 168, 493503.
  • [53]
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 48764882.