• [1]
    Brouwer, A., Longnecker, M.P., Birnbaum, L.S., Cogliano, J., Kostyniak, P., Moore, J., Schantz, S., Winneke, G. (1999) Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ. Health Perspect. 107 (Suppl. 4), 639649.
  • [2]
    MacDonald, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G., Strachan, W.M.J., Li, Y.F., Wania, F., Alaee, M., Alexeeva, L.B., Backus, S.M., Bailey, R., Bewers, J.M., Gobeil, C., Halsall, C.J., Harner, T., Hoff, J.T., Jantunen, L.M.M., Lockhart, W.L., Mackay, D., Muir, D.C.G., Pudykiewicz, J., Reimer, K.J., Smith, J.N., Stern, G.A., Schroeder, W.H., Wagemann, R., Yunker, M.B. (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93234.
  • [3]
    Taira, K., Hirose, J., Hayashida, S., Furukawa, K. (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267, 48444853.
  • [4]
    Romine, M.F., Stillwell, L.C., Wong, K.-K., Thurston, S.J., Sisk, E.C., Sensen, C., Gaasterland, T., Fredrickson, J.K., Saffer, J.D. (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181, 15851602.
  • [5]
    Joshi, B., Walia, S.K. (1995) Characterization by arbitrary primer-PCR of polychlorinated biphenyl degrading strains of Comamonas testosteroni isolated from PCB-contaminated soil. Can. J. Microbiol. 41, 612619.
  • [6]
    Barton, M.R., Crawford, R.L. (1988) Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp. Appl. Environ. Microbiol. 54, 594595.
  • [7]
    Asturias, J.A., Diaz, E., Timmis, K.N. (1995) The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene 156, 1118.
  • [8]
    Bopp, L.H. (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1, 2329.
  • [9]
    Goris, J., de Vos, P., Caballero-Mellado, J., Park, J., Falsen, E., Quensen III, J.F., Tiedje, J.M., Vandamme, P. (2004) Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int. J. Syst. Evol. Microbiol. 54, 16771681.
  • [10]
    Nogales, B., Moore, E.R.B., Abraham, W.-R., Timmis, K.N. (1999) Identification of the metabolically-active members of a bacterial community in a PCB-polluted moorland soil. Environ. Microbiol. 1, 199212.
  • [11]
    Lünsdorf, H., Strömpl, C., Osborn, A.M., Bennasar, A., Moore, E.R.B., Abraham, W.-R., Timmis, K.N. Approach to Analyze Interactions of Microorganisms, Hydrophobic Substrates and Soil Colloids Leading to Formation of Composite Biofilms, and to Study Initial Events in Microbiogeological Processes.
  • [12]
    Lünsdorf, H., Erb, R.W., Abraham, W.-R., Timmis, K.N. (2000) Clay hutches: a novel interaction between bacteria and clay minerals. Environ. Microbiol. 2, 161168.
  • [13]
    Ivanov, V., Sandell, E. (1992) Characterization of polychlorinated biphenyl isomers in Sovol and Trichlorobiphenyl formulations by high-resolution gas chromatography with electron capture detection and high-resolution gas chromatography–mass spectrometry techniques. Environ. Sci. Technol. 26, 20122017.
  • [14]
    Büthe, A., Denker, E. (1995) Qualitative and quantitative determination of PCB congeners by using a HT-5 GC column and an efficient quadropole MS. Chemosphere 30, 753771.
  • [15]
    Ballschmiter, K., Zell, M. (1980) Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresen. Z. Anal. Chem. 302, 2031.
  • [16]
    Ayris, S., Harrad, S. (1999) The fate and persistence of polychlorinated biphenyls in soil. J. Environ. Monit. 1, 395401.
  • [17]
    Beck, H., Droß, A., Mathar, W. (1989) 3,3′,4,4′-Tetrachlorobiphenyl in human fat and milk samples. Chemosphere 19, 18051810.
  • [18]
    Duinker, J.C., Schulz, D.E., Petrick, G. (1988) Selection of chlorinated biphenyl congeners for analysis in environmental samples. Mar. Pollut. Bull. 19, 1925.
  • [19]
    Porter, K., Feig, Y.G. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943948.
  • [20]
    Ritchie, N.J., Schutter, M.E., Dick, R.P., Myrold, D.D. (2000) Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66, 16681675.
  • [21]
    Schwieger, F., Tebbe, C.C. (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64, 48704876.
  • [22]
    Bassam, B.J., Caetano-Anolles, G., Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem., 196, 1991, 80–83, Erratum in: Anal. Biochem. 198, 217.
  • [23]
    Abraham, W.-R., Strömpl, C., Vancanneyt, M., Lünsdorf, H., Moore, E.R.B. (2001) Determination of the systematic position of the genus Asticcacaulis Poindexter by a polyphasic analysis. Int. J. Syst. Evol. Microbiol. 51, 2734.
  • [24]
    Bligh, E.G., Dyer, W.J. (1959) A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.
  • [25]
    Vancanneyt, M., Witt, S., Abraham, W.-R., Kersters, K., Fredrickson, H.L. (1996) Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst. Appl. Microbiol. 19, 528540.
  • [26]
    Bedard, D.L., Unterman, R., Bopp, L.H., Brennan, M.J., Haberl, M.L., Johnson, C. (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51, 761768.
  • [27]
    Abraham, W.-R., Meyer, H., Lindholst, S., Vancanneyt, M., Smit, J. (1997) Phospho- and sulfolipids as biomarkers of Caulobacter, Brevundimonas and Hyphomonas Syst. Appl. Microbiol. 20, 522539.
  • [28]
    Abraham, W.-R., Hesse, C., Pelz, O. (1998) Ratios of carbon isotopes in microbial lipids as indicator of substrate usage. Appl. Environ. Microbiol. 64, 42024209.
  • [29]
    Luthy, R.G., Dzombak, D.A., Shannon, M.J.R., Unterman, R., Smith, J.R. (1997) Dissolution of PCB congeners from an Aroclor and an Aroclor/hydraulic oil mixture. Wat. Res. 31, 561573.
  • [30]
    Ron, E.Z., Rosenberg, E. (2001) Natural roles of biosurfactants. Environ. Microbiol. 3, 229236.
  • [31]
    Wick, L., de Munain, A., Springael, D., Harms, H. (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol. 58, 378385.
  • [32]
    Peters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C. (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66, 930936.
  • [33]
    Nogales, B., Moore, E.R.B., Llobet-Brossa, E., Rossello-Mora, R., Amann, R., Timmis, K.N. (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67, 18741884.
  • [34]
    Hauksson, J.B., Rilfors, L., Lindblom, G., Arvidson, G. (1995) Structures of glucolipids from the membrane of Acholeplasma laidlawii strain A-EF22. III. Monoglucosyldiacylglycerol, diglucosyldiacylglycerol, and monoacyldiglucosyldiacylglycerol. Biochim. Biophys. Acta 1258, 19.
  • [35]
    Andersson, A.S., Rilfors, L., Lewis, R.N., McElhaney, R.N., Lindblom, G. (1998) Occurrence of monoacyl-diglucosyl-diacyl-glycerol and monoacyl-bis-glycerophosphoryl-diglucosyl-diacyl-glycerol in membranes of Acholeplasma laidlawii strain B-PG9. Biochim. Biophys Acta 1389, 4349.
  • [36]
    Smith, P.F. (1969) Biosynthesis of glucosyl diglycerides by Mycoplasma laidlawii strain B. J. Bacteriol. 99, 480486.
  • [37]
    Karlsson, O.P., Rytömaa, M., Dahlqvist, A., Kinnunen, P.K.J., Wieslander, Å. (1996) Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes. Biochemistry 35, 1009410102.
  • [38]
    Tillmann, S. (2004) Assessment of the degradation potential of microbial biocenoses and identification of bacterial taxa involved in the organic degradation using isotope ratio mass spectrometry (IRMS). Ph.D. thesis, Technical University Braunschweig, Germany. URN: urn:nbn:de:gbv:084-5536. Available from:
  • [39]
    Wick, L.Y., Pelz, O., Bernasconi, S.M., Andersen, N., Harms, H. (2003) Influence of the growth substrate on ester-linked phospho- and glycolipid fatty acids of PAH-degrading Mycobacterium sp. LB501T. Environ. Microbiol. 5, 672680.
  • [40]
    Bedard, D.L., Haberl, M.L. (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20, 87102.
  • [41]
    Seeger, M., Zielinski, M., Timmis, K.N., Hofer, B. (1999) Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microb. 65, 36143621.
  • [42]
    Pellizari, V.H., Bezborodnikov, S., Quensen III, J.F., Tiedje, J.M. (1996) Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl. Environ. Microbiol. 62, 20532058.
  • [43]
    Abraham, W.-R., Lünsdorf, H., Strömpl, C., Nogales, B., Moore, E.R.B., Timmis, K.N. (2003) Microbial communities in composite biofilms participating in the degradation of PCB. Water, Air Soil Pollution: Focus: Bioremediation 3, 5764.
  • [44]
    Kim, S., Picardal, F. (2001) Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source. Appl. Environ. Microbiol. 67, 19531955.
  • [45]
    J. Wimpenny An Overview of Biofilms as Functional Communities D.G. Allison P. Gilbert H.M. Lappin-Scott M. Wilson SGM Symposium 59: Community Structure and Co-operation in Biofilms 2000 Cambridge University Press Cambridge, UK 1 14.
  • [46]
    Dai, S., Vaillancourt, F.H., Maaroufi, H., Drouin, N.M., Neau, D.B., Snieckus, V., Bolin, J.T., Eltis, L.D. (2002) Identification and analysis of a bottleneck in PCB biodegradation. Nat. Struct. Biol. 9, 934939.
  • [47]
    Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J., Caldwell, D.E. (1994) Multicellular organization in a degradative biofilm community. Appl. Environ. Biotechnol. 60, 434446.
  • [48]
    Pelz, O., Tesar, M., Wittich, R.-M., Moore, E.R.B., Timmis, K.N., Abraham, W.-R. (1999) Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ. Microbiol. 1, 167174.
  • [49]
    Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., Molin, S. (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2, 5968.