• [1]
    Pewe, T. Permafrost Encyclopedia Britannica. vol. 20, 1995, 752–759.
  • [2]
    D. Gilichinsky Permafrost model of extraterrestrial habitat G. Horneck Astrobiology 2001 Springer-Verlag New York 271 295.
  • [3]
    Vishnivetskaya, T., Kathariou, S., McGrath, J., Tiedje, J.M. (2000) Low temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165173.
  • [4]
    Gilichinsky, D., Wagener, S., Vishnivetskaya, T. (1995) Permafrost Microbiology. Permafrost Periglacial Proc. 6, 281291.
  • [5]
    H.S. Vishiniac The microbiology of Antarctic soils E.I. Friedmann Antarctic Microbiology 1993 Wiley-Liss New York 297 341.
  • [6]
    Vishnevetskaya, T., Petrova, M.A., Urbance, J., Moyer, C., Ponder, M. and Tiedje, J. (in preparation) Phylogenetic diversity of bacteria inside the Arctic permafrost
  • [7]
    Berry, E.D., Foegeding, P.M. (1997) Cold temperature adaptation and growth of microorganisms. J. Food Prot. 60, 15831594.
  • [8]
    Walker, S., Archer, P., Banks, J.G. (1990) Growth ofListeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol. 68, 157162.
  • [9]
    Panicker, G., Aislabie, J., Saul, D., Bej, A.K. (2002) Cold tolerance ofPseudomonas sp. 30-3 isolated from oil contaminated soil, Antarctica. Polar Biol. 25, 511.
  • [10]
    Reddy, G.S.N., Prakash, J.S.S., Matsumoto, G.I., Stackebrandt, E., Shivaji, S. (2002) Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. International J. System. Evol. Microbiol. 52, 10171021.
  • [11]
    Nelson, L.M., Parkinson, D. (1978) Effect of freezing and thawing on survival of three bacterial isolates from an Arctic soil. Can. J. Microbiol. 24, 14681474.
  • [12]
    Willerslev, E., Hansen, A.J., Poinar, H.N. (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141147.
  • [13]
    J. McGrath S. Wagener D. Gilichinsky Cryobiological studies of ancient microorganisms isolated from Siberian permafrost D. Gilichinsky Viable Microorganisms in Permafrost 1994 Pushchino Press Pushchino 48 67.
  • [14]
    J.A. Breznak R.N. Costilow Physiochemical factors in growth P. Gerhardt R.G.E. Murray W.A. Wood N.R. Krieg Methods for General and Molecular Bacteriology 1994 American Society for Microbiology Press Washington DC 137 153.
  • [15]
    Ratkowsky, D.A., Ross, T., McMeekin, T.A., Olley, J. (1991) Comparison of Arrhenius-type model and Belehradek-type models for prediction of bacterial growth in foods. J. Appl. Bacteriol. 71, 452459.
  • [16]
    Rand, R.P., 2004. Osmotic Pressure Data. Available from:
  • [17]
    Liu, J., Dazzo, F., Glagoleva, O., Yu, B., Jain, A.K. (2001) CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb. Ecol. 41, 173194.
  • [18]
    Mindock, C., Petrova, M.A., Hollingsworth, R.I. (2001) Re-evaluation of osmotic effects as a general adaptive strategy for bacteria in sub-freezing conditions. Biophys. Chem. 89, 1324.
  • [19]
    Hollingsworth, R.I., Abe, M., Sherwood, J.E., Dazzo, F.B. (1984) Bacteriophage-induced acidic heteropolysaccharide lyases that convert the acidic heteropolysaccharides of Rhizobium trifolii into oligosaccharide units. J. Bacteriol. 160, 510516.
  • [20]
    Barry, A., Thornsberry, C. Susceptibility testing: diffusion test procedures, Balows, A., Hausler, W., Truant, J., Eds. Manual of Clinical Microbiology 1980, ASM Press, Washington DC.
  • [21]
    Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., Sage, E. (1999) Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artifacts. J. Photochem. Photobiol. B 49, 7180.
  • [22]
    Sutherland, B.M., Bennett, P.V., Sidorkina, O., Laval, J. (2000) Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry 39, 80268031.
  • [23]
    Castrillo, L.A., Rutherford, S.T., Lee, R.E., Lee, M.R. (2001) Enhancement of ice-nucleating activity in Pseudomonas fluorescens and its effect on efficacy against overwintering Colorado potato beetles. Biol. Control 21, 2734.
  • [24]
    Lee, M.R., Lee, R.E.J., Strong-Gunderson, J., Minges, S. (1995) Isolation of ice nucleating active bacteria from the freeze tolerant frog, Rana sylvatica. Cryobiology 32, 358365.
  • [25]
    Vali, G. (1971) Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28, 402409.
  • [26]
    Pooley, L., Brown, T.A. (1990) Preparation of active cell-free ice nuclei from Pseudomonas syringae. Proc. R. Soc. Lond. Ser. B – Biol. Sci. 241, 112115.
  • [27]
    Breezee, J., Cady, N., Staley, J.T. (2004) Subfreezing Growth of the Sea Ice Bacterium Psychromonas ingrahamii. Microb. Ecol. 47, 300304.
  • [28]
    Bakermans, C., Tsapin, A.I., Souza-Egipsy, V., Gilichinskii, D.A., Nealson, K. (2003) Reproduction and metabolism at −10 °C of bacteria isolated form Siberian permafrost. Environ. Microbiol. 5, 321326.
  • [29]
    Guillou, C., Geuspin-Michel, J.F. (1996) Evidence for two domains of growth temperature for psychrotrophic bacterium Pseudomonas fluorscens MF0. Appl. Environ. Microbiol. 62, 33193324.
  • [30]
    Csonka, L. (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121147.
  • [31]
    Keddie, R.M., Collins, M.D., Jones, D. Genus Arthrobacter Conn and Dimmick 1947.
  • [32]
    Russell, N.J. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications.
  • [33]
    G.J. Morris A. Clarke Cells at low temperatures G.J. Morris B.W.W. Grout The Effects of Low Temperatures on Biological Systems 1987 Edward Arnold Publishers LTD Baltimore, MD 71 129.
  • [34]
    Yakimov, M.M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T.N., Abraham, W.-R., Lunsdorf, H., Timmis, K.N., Golyshin, P.N. (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. System. Evolution. Microbiol. 53, 779785.
  • [35]
    Mastronicolis, S.K., German, J.B., Megoulas, N., Petrou, E., Foka, P., Smith, G.M. (1998) Influence of cold shock on the fatty-acid composition of different lipid classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol. 15, 299306.
  • [36]
    Kogut, M., Russell, N.J. (1984) The growth and phospholipid composition of moderately halophilic bacterium during adaptations to changes in salinity. Current Microbiol. 10, 9598.
  • [37]
    Adams, R., Russell, N.J. (1992) Interactive effects of salt concentration and temperature on growth and lipid composition in the moderate halophilic bacteriumVibrio costicola. Can. J. Microbiol. 38, 823827.
  • [38]
    Huston, A.L., Methe, B., Deming, J.W. (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine Psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70, 33213328.
  • [39]
    J.C. Ellis-Evans D.D. Wynn-Williams The interaction of soil and lake microflora at Signy Island W.R. Siegfried P.R. Condy R.M. Laws Antarctic Nutrient Cycles 1985 Springer-Verlag Berlin 662 668.
  • [40]
  • [41]
    Wouters, J. (2001) Cold shock proteins ofLactococcus lactis MG1363 are involved in cryoprotection and in the productions of cold-induced proteins. Appl. Environ. Microbiol. 67, 51715178.
  • [42]
    Sardesai, N., Babu, C.R. (2001) Poly-β-hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains ofRhizobium. Current Microbiol. 42, 5358.
  • [43]
    Eze, M., McElhaney, R.N. (1981) The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli. J. Gen. Microbiol. 124, 299307.
  • [44]
    Vermersch, P., Tesmer, J., Lemon, D., Quiocho, F. (1990) A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies. J. Biol. Chem. 265, 1659216603.
  • [45]
    Bollman, J., Ismond, A., Blank, G. (2001) Survival of Escherichia coli O157:H7 in frozen foods: impact of the cold shock response. Int. J. Food Microbiol. 64, 127131.
  • [46]
    Kim, W.S., Khunajakar, N., Dunn, N.W. (1998) Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiology 37, 8691.
  • [47]
    Kim, W., Dunn, N.W. (1997) Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Current Microbiol. 35, 5963.
  • [48]
    Hong, S.H., Marshall, R.T. (2001) Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts. J. Dairy Sci. 84, 13671374.
  • [49]
    Panoff, J.M., Thammavongs, B., Gueguen, M. (2000) Cryoprotectants lead to phenotypic adaptation to freeze–thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Cryobiology 40, 264269.
  • [50]
    Zachariassen, K.E., Hammel, H.T. (1976) Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262, 285287.
  • [51]
    Mazur, P. (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14, 251272.
  • [52]
    Mazur, P. (1984) Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, C125C142.
  • [53]
    Xu, H., Griffith, M., Patten, C., Glick, B. (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putidia GR12-2. Can. J. Microbiol. 44, 6473.
  • [54]
    Duman, J.G., Xu, L., Neven, T.G., Tursman, D., Wu, D.W. Hemolymph proteins involved in insect sub-zero temperature tolerance: ice nucleators and antifreeze proteins.
  • [55]
    Griffith, M., Ewart, K.V. (1995) Antifreeze proteins and their potential uses in frozen foods. Biotechnol. Adv. 13, 375402.
  • [56]
    Price, R.B., Sowers, T. (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc. Nat. Acad. Sci. USA 101, 46314636.