• [1]
    Reeburgh, W.S., Whalen, S.C. (1992) High-latitude ecosystems as CH4 sources. Ecol. Bull. 42, 6270.
  • [2]
    Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M. Atmospheric chemistry and greenhouse gases, Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds. Climate change 2001: the scientific basis, intergovernmental panel on climate change 2001, 239–287.
  • [3]
    Anisimov, O., Fitzharris, B. Polar regions (Arctic and Antarctic) McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds. Climate change 2001: impacts, adaptation, and vulnerability, intergovernmental panel on climate change 2001, 801–841.
  • [4]
    Christensen, T.R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., Svensson, B.H., Nykänen, H., Martikainen, P.J., Oskarsson, H. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 2003..
  • [5]
    Christensen, T.R., Johansson, T.R., Åkerman, H.J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P., Svensson, B.H. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, 2004..
  • [6]
    Morrissey, L.A., Livingston, G.P. (1992) Methane emissions from Alaska Arctic tundra: an assessment of local spatial variability. J. Geophys. Res. 97, 16,66116,670.
  • [7]
    Christensen, T.R., Jonasson, S., Callaghan, T.V., Havström, M. (1995) Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. J. Geophys. Res. 100, 21,03521,045.
  • [8]
    Christensen, T.R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L., Soegaard, H., Nordstroem, C., Jonasson, S. (2000) Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem. Cy. 14, 701713.
  • [9]
    Christensen, T.R. (1999) Potential and actual trace gas fluxes in Arctic terrestrial ecosystems. Polar Res. 18, 199206.
  • [10]
    Schimel, J.P., Gulledge, J. (1998) Microbial community structure and global trace gases. Global Change Biol. 4, 745758.
  • [11]
    Edwards, C., Hales, B.A., Hall, G.H., McDonald, I.R., Murrell, J.C., Pickup, R., Ritchie, D.A., Saunders, J.R., Simon, B.M., Upton, M. (1998) Microbiological processes in the terrestrial carbon cycle: methane cycling in peat. Atmos. Environ. 32, 32473255.
  • [12]
    Utsumi, M., Belova, S.E., King, G.M., Uchiyama, H. (2003) Phylogenetic comparison of methanogen diversity in different wetland soils. J. Gen. Appl. Microbiol. 49, 7583.
  • [13]
    Horn, M.A., Matthies, C., Küsel, K., Schramm, A., Drake, H.L. (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl. Environ. Microbiol. 69, 7483.
  • [14]
    Galand, P.E., Fritze, H., Yrjälä, K. (2003) Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ. Microbiol. 5, 11331143.
  • [15]
    Basiliko, N., Yavitt, J.B., Dees, P.M., Merkel, S.M. (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol. J. 20, 563577.
  • [16]
    Kotsyurbenko, O.R., Chin, K.J., Glagolev, M.V., Stubner, S., Simankova, M.V., Nozhevnikova, A.N., Conrad, R. (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 6, 11591173.
  • [17]
    Wartiainen, I., Hestnes, A.G., Svenning, M.M. (2003) Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway) – denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can. J. Microbiol. 49, 602612.
  • [18]
    van der Waal, R., Loonen, M.J.J.E. (1998) Goose droppings as food for reindeer. Can. J. Zool. 76, 11171122.
  • [19]
    Clymo, R.S. Peat.
  • [20]
    J. Forster Soil sampling, handling, storage and analysis A. Kassem P. Nannipieri Methods in applied soil microbiology and biochemistry 1995 Academic Press London 49 116.
  • [21]
    Porter, K.C., Feig, Y.S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943948.
  • [22]
    W.B. Whitman, T.L. Bowen, D.R. Boone, The methanogenic bacteria, in: A. Balows, H.G. Truper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.), The Prokaryotes, vol. 2, Springer, Berlin, 1992, pp. 719–767
  • [23]
    Widdel, F., Kohring, G.W., Mayer, F. (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov. Arch. Microbiol. 134, 286294.
  • [24]
    Pfennig, N. (1978) Rhodocyclus purpureus gen. nov and sp. nov. a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28, 283288.
  • [25]
    Nakatsu, C.H., Torsvik, V., Øvreås, L. (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64, 13821388.
  • [26]
    Øvreås, L., Forney, L., Daae, F.L., Torsvik, V. (1997) Distribution of bacterioplankton in meromictic lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 33673373.
  • [27]
    G. Jurgens, Molecular phylogeny of Archaea in boreal forest soil, freshwater and temperate estuarine sediment, Ph.D. Thesis, Department of Applied Chemistry and Microbiology, Division of Microbiology, University of Helsinki, Helsinki, Finland, 2002, 73 pp. (
  • [28]
    C.J.F. Ter Braak, P. Šmilauer, CANOCO Reference Manual and CanoDraw for Windows User’ s Guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, New York, 2002, 500pp
  • [29]
    Fromin, N., Hamelin, J., Tarnawski, S., Roesti, D., Jourdain-Miserez, K., Forestier, N., Teyssier-Cuvelle, S., Gillet, F., Aragno, M., Rossi, P. (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 4, 634643.
  • [30]
    Lloyd, C.R. (2001) On the physical controls of the carbon dioxide balance at a high Arctic site in Svalbard. Theor. Appl. Climatol. 70, 167182.
  • [31]
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L., Schleper, C. (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787797.
  • [32]
    Boon, N., de Windt, W., Verstraete, W., Top, E.M. (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol. Ecol. 39, 101112.
  • [33]
    Wintzingerode, F.v., Göbel, U.B., Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213229.
  • [34]
    Kowalchuk, G.A., Stephen, J.R., de Boer, W., Prosser, J.I., Embley, T.M., Woldendorp, J.W. (1997) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63, 14891497.
  • [35]
    Ferris, M.J., Ward, D.M. (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63, 13751381.
  • [36]
    G. Muyzer T. Brinkhoff U. Nübel C. Santegods H. Schäfer C. Wawer Denaturing gradient gel electrophoresis (DGGE) in microbial ecology A.D.L. Akkermans J.D. van Elsas F.J. de Bruijn Molecular microbial ecology manual 1998 Kluwer Academic Publishers Dordrecht 3.4.4:1 3.4.4:27.
  • [37]
    Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W., Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 56365643.
  • [38]
    Chan, O.C., Wolf, M., Hepperle, D., Casper, P. (2002) Methanogenic archaeal community in the sediment of an artificially partioned acidic bog lake. FEMS Microbiol. Ecol. 42, 119129.
  • [39]
    Grosskopf, R., Stubner, S., Liesack, W. (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64, 49834989.
  • [40]
    Kendall, M.M., Boone, D.R. The order Methanosarcinales, Dworkin, M., Ed. The prokaryotes: an evolving electronic resource for the microbiological community, release 3.17, August 31, 3rd ed. 2004, Springer, New York.
  • [41]
    Chin, K.-J., Conrad, R. (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18, 85102.
  • [42]
    Schulz, S., Matsuyama, H., Conrad, R. (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol. Ecol. 22, 207213.
  • [43]
    R.S. Oremland Biogeochemistry of methanogenic bacteria A.J.B. Zehnder Biology of anaerobic microorganisms 1988 Wiley New York 641 705.
  • [44]
    S.H. Zinder Physiological ecology of methanogens J.G. Ferry Methanogenesis: ecology, physiology, biochemistry and genetics 1993 Chapman & Hall New York 128 206.
  • [45]
    Liesack, W., Schnell, S., Revsbech, N.P. (2000) Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24, 625645.
  • [46]
    Fey, A., Conrad, R. (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66, 47904797.
  • [47]
    Wagner, D., Kobabe, S., Pfeiffer, E.-M., Hubberten, H.-W. (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac. 14, 173185.
  • [48]
    Avery, G.B.J., Shannon, R.D., White, J.R., Martens, C.S., Alperin, M.J. (1999) Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland. Global Biogeochem. Cy. 13, 475484.
  • [49]
    P.M. Crill R.C. Harriss K.B. Bartlett Methane fluxes from terrestrial wetland environments J.E. Rogers W.B. Whitman Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes 1991 American Society for Microbiology Washington, DC 91 109.
  • [50]
    Whalen, S.C., Reeburgh, W.S. (1992) Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem. Cy. 6, 139159.
  • [51]
    Vourlitis, G.L., Oechel, W.C., Hastings, S.J., Jenkins, M.A. (1993) The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the north slope of Alaska. Chemosphere 26, 329337.