• [1]
    Bals, R. (2000) Epithelial antimicrobial peptides in host defense against infection. Respir. Res 1, 141150.
  • [2]
    Travis, S.M., Singh, P.K., Welsh, M.J. (2001) Antimicrobial peptides and proteins in the innate immune defense of the airway surface. Curr. Opin. Immunol 13, 8995.
  • [3]
    Gudmundsson, G.H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., Salcedo, R. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem 238, 325332.
  • [4]
    Sorensen, O., Arnljots, K., Cowland, J.B., Bainton, D.F., Borregaard, N. (1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90, 27962803.
  • [5]
    Agerberth, B., Charo, J., Werr, J., Olsson, B., Idali, F., Lindbom, L., Kiessling, R., Wigzell, H., Gudmundsson, G.H. (2000) The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte monocyte populations. Blood 96, 30863093.
  • [6]
    Frohm, M., Sandstedt, B., Sørensen, O., Weber, G., Borregaard, N., Ståhle-Bäckdahl, M. (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalized with interleukin-6. Infect. Immun 67, 25612566.
  • [7]
    Frohm, M., Agerberth, B., Ahangari, G., Ståhle-Bäckdahl, M., Wigzell, H., Gudmundsson, G.H. (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem 272, 1525815263.
  • [8]
    Bals, R., Wang, X., Zasloff, M., Wilson, J.M. (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelial of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95, 95419546.
  • [9]
    Agerberth, B., Grunewald, J., Castaños-Velez, E., Olsson, B., Jörnvall, H., Wigzell, H., Eklund, A., Gudmundsson, G.H. (1999) Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am. J. Respir. Crit. Care Med 160, 283290.
  • [10]
    Larrick, J.W., Hirata, M., Balint, R.F., Lee, J., Zhong, J., Wright, S.C. (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun 63, 12911297.
  • [11]
    Yang, D., Chen, Q., Schmidt, A.P., Anderson, G.M., Wang, J.M., Wooters, J., Oppenheim, J.J., Chertov, O. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med 192, 10691074.
  • [12]
    Niyonsaba, F., Iwabuchi, K., Someya, A., Hirata, M., Matsuda, H., Ogawa, H., Nagaoka, I. (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106, 2026.
  • [13]
    Tjabranga, G.S., Aarbiou, J., Ninaber, D.K., Drijfhout, J.W., Sørensen, O.E., Borregaard, N., Rabe, K.F., Hiemstra, P.S. (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol 171, 66906696.
  • [14]
    Scott, M.G., Davidson, D.J., Gold, M.R., Bowdish, D., Hancock, R.E. (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol 169, 38833891.
  • [15]
    Davidson, D.J., Currie, A.J., Reid, G.S.D., Bowdish, D.M.E., MacDonald, K.L., Ma, R.C., Hancock, R.E.W., Speert, D.P. (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell proliferation. J. Immunol 172, 11461156.
  • [16]
    Bals, R., Weiner, D.J., Meegalla, R.L., Wilson, J.M. (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest 103, 11131117.
  • [17]
    Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R.A., Pestonjamasp, V., Piraino, J., Huttner, K., Gallo, R.L. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454457.
  • [18]
    Pütsep, K., Carlsson, G., Boman, H.G., Andersson, M. (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. The Lancet 360, 11441149.
  • [19]
    Duits, L.A., Nibbering, P.H., van Strijen, E., Vos, J.B., Mannesse-Lazeroms, S.P., van Sterkenburg, M.A., Hiemstra, P.S. (2003) Rhinovirus increases human beta-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol. Med. Microbiol 38, 5964.
  • [20]
    Harder, J., Bartels, J., Christophers, E., Schröder, J.-M. (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem 276, 57075713.
  • [21]
    Lysenko, E.S., Gould, J., Bals, R., Wilson, J.M., Weiser, J.N. (2000) Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect. Immun 68, 16641671.
  • [22]
    Islam, D., Bandholtz, L., Nilsson, J., Wigzell, H., Christensson, B., Agerberth, B., Gudmundsson, G.H. (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med 7, 180185.
  • [23]
    Nell, M.J., Grote, J.J. (2003) Effects of bacterial toxins on air-exposed cultured human respiratory sinus epithelium. Ann. Otol. Rhinol. Laryngol 112, 461468.
  • [24]
    Shinogi, J., Harada, T., Nonoyama, T., Kishioka, C., Sakakura, Y., Majima, Y. (2001) Quantitative analysis of mucin and lectin in maxillary sinus fluids in patients with acute and chronic sinusitis. Laryngoscope 111, 240245.
  • [25]
    Majima, Y., Harada, T., Shimizu, T., Takeuchi, K., Sakakura, Y., Yasuoka, S., Yoshinaga, S. (1999) Effect of biochemical components on rheologic properties of nasal mucus in chronic sinusitis. Am. J. Respir. Crit. Care Med 160, 421426.
  • [26]
    Kita, H., Himi, T. (1999) Cytokine and chemokine induction using cell wall component and toxin derived from gram-positive bacteria in the rat middle ear. Acta Otolaryngol. (Stockh.) 119, 446452.
  • [27]
    Tong, H.H., Chen, Y., James, M., van Deusen, J., Welling, D.B., DeMaria, T.F. (2001) Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by formalin-killed Haemophilus influenzae or its lipooligosaccharide htrB and rfaD mutants. Infect. Immun 69, 36783684.
  • [28]
    Albers-Op't Hof, B.M., Peek, F.A.W., Huisman, M.A., Grote, J.J. (2002) Air-exposed tissue culture of human middle ear epithelium and meatal epidermis: a method to study the advancing front of cholesteatoma. Acta Otolaryngol 122, 720725.
  • [29]
    Schauber, J., Svanholm, C., Termen, S., Iffland, K., Menzel, T., Scheppach, W., Melcher, R., Agerberth, B., Luhrs, H., Gudmundsson, G.H. (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52, 735741.
  • [30]
    Schaller-Bals, S., Schulze, A., Bals, R. (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am. J. Respir. Crit. Care Med 165, 992995.
  • [31]
    Kim, S.T., Cha, H.E., Kim, D.Y., Han, G.C., Chung, Y.-S., Lee, Y.J., Hwang, Y.J., Lee, H.-M. (2003) Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol 123, 8185.
  • [32]
    Smirnova, M.G., Birchall, J.P., Pearson, J.P. (2002) In vitro study of IL-8 and goblet cells: possible role of IL-8 in the aetiology of otitis media with effusion. Acta Otolaryngol 122, 146152.
  • [33]
    Yanagihara, K., Seki, M., Cheng, P.-W. (2001) Lipopolysaccharide induces mucus cell metaplasia in mouse lung. Am. J. Respir. Cell Mol. Biol 24, 6673.
  • [34]
    Vernooy, J.H.J., Dentener, M.A., van Suylen, R.J., Buurman, W.A., Wouters, E.F.M. (2002) Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol 26, 152159.
  • [35]
    Stolk, J., Rudolphus, A., Davies, P., Osinga, D., Dijkman, J.H., Agarwal, L., Keenan, K.P., Fletcher, D., Kramps, J.A. (1992) Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. J. Pathol 167, 349356.
  • [36]
    Takeda, K., Kaisho, T., Akira, S. (2003) Toll-like receptors. Annu. Rev. Immunol 21, 335376.
  • [37]
    Takeno, S., Hirakawa, K., Ueda, T., Furukido, K., Osada, R., Yajin, K. (2002) Nuclear factor-kappa B activation in the nasal polyp epithelium: relationship to local cytokine gene expression. Laryngoscope 112, 5358.
  • [38]
    Li, J.-D., Feng, W., Gallup, M., Kim, J.-H., Gum, J., Kim, Y., Basbaum, C. (1998) Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA 95, 57185723.
  • [39]
    Tomita, T., Nagase, T., Ohga, E., Yamaguchi, Y., Yoshizumi, M., Ouchi, Y. (2002) Molecular mechanisms underlying human beta-defensin-2 gene expression in a human airway cell line (LC2/ad). Respirology 7, 305310.