• [1]
    Diekema, D.J., Pfaller, M.A., Schmitz, F.J., Smayevsky, J., Bell, J., Jones, R.N., Beach, M. (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 32 (Suppl. 2), S114S132.
  • [2]
    Waldvogel, F.A. (1985) Staphylococcus aureus (including toxic shock syndrome). In: Principles and Practice of Infectious Diseases (Mandell, G.L., Douglas, R.G., Bennett, J.E., Eds.), pp.1097–1117 Wiley, New York.
  • [3]
    NNIS (2003). National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003. Am. J. Infect. Control 31, 481–98
  • [4]
    Santoro, J., Levison, M.E. (1978) Rat model of experimental endocarditis. Infect. Immun. 19, 915918.
  • [5]
    McCormick, J.K., Yarwood, J.M., Schlievert, P.M. (2001) Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55, 77104.
  • [6]
    Bunce, C., Wheeler, L., Reed, G., Musser, J., Barg, N. (1992) Murine model of cutaneous infection with gram-positive cocci. Infect. Immun. 60, 26362640.
  • [7]
    Tarkowski, A., Collins, L.V., Gjertsson, I., Hultgren, O.H., Jonsson, I.M., Sakiniene, E., Verdrengh, M. (2001) Model systems: modeling human staphylococcal arthritis and sepsis in the mouse. Trends Microbiol. 9, 321326.
  • [8]
    Brouillette, E., Grondin, G., Lefebvre, C., Talbot, B.G., Malouin, F. (2004) Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus. Vet. Microbiol. 101, 253262.
  • [9]
    Weiss, W.J., Lenoy, E., Murphy, T., Tardio, L., Burgio, P., Projan, S.J., Schneewind, O., Alksne, L. (2004) Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. J. Antimicrob. Chemother. 53, 480486.
  • [10]
    Kiser, K.B., Cantey-Kiser, J.M., Lee, J.C. (1999) Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect. Immun. 67, 50015006.
  • [11]
    Hedges, B.S., Kumar, S. (2003) Genomic clocks and evolutionary timescales. Trends in Genetics 19, 200206.
  • [12]
    Tatusov, R.L. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 4, 41.
  • [13]
    Janeway, C.A., Jr., Medzhitov, R. (2002) Innate immune recognition. Annu. Rev. Immunol. 20, 197216.
  • [14]
    Bulet, P., Stocklin, R., Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169184.
  • [15]
    Dziarski, R. (2004) Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40, 877886.
  • [16]
    Christophides, G.K., Vlachou, D., Kafatos, F.C. (2004) Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol. Rev. 198, 127148.
  • [17]
    Fujita, T., Matsushita, M., Endo, Y. (2004) The lectin-complement pathway–its role in innate immunity and evolution. Immunol. Rev. 198, 185202.
  • [18]
    Kanost, M.R., Jiang, H., Yu, X.Q. (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198, 97105.
  • [19]
    Leclerc, V., Reichhart, J.M. (2004) The immune response of Drosophila melanogaster. Immunol. Rev. 198, 5971.
  • [20]
    Agaisse, H., Perrimon, N. (2004) The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 7282.
  • [21]
    Ligoxygakis, P. et-al (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 63306337.
  • [22]
    Schulenburg, H., Kurz, C.L., Ewbank, J.J. (2004) Evolution of the innate immune system: the worm perspective. Immunol. Rev. 198, 3658.
  • [23]
    Mayer-Scholl, A., Averhoff, P., Zychlinsky, A. (2004) How do neutrophils and pathogens interact Curr. Opin. Microbiol. 7, 6266.
  • [24]
    Kavanagh, K., Reeves, E.P. (2004) Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol. Rev. 28, 101112.
  • [25]
    Glupov, V.V., Khvoshevskaya, M.F., Lozinskaya, Y.L., Dubovski, I.M., Martemyanov, V.V., Sokolova, J.Y. (2001) Application of the nitroblue tetrazolium-reduction method for studies on the production of reactive oxygen species in insect haemocytes. Cytobios 106 (Suppl. 2), 165178.
  • [26]
    De Gregorio, E., Spellman, P.T., Rubin, G.M., Lemaitre, B. (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98, 1259012595.
  • [27]
    Irving, P., Troxler, L., Heuer, T.S., Belvin, M., Kopczynski, C., Reichhart, J.M., Hoffmann, J.A., Hetru, C. (2001) A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. USA 98, 1511915124.
  • [28]
    Nichol, H., Law, J.H., Winzerling, J.J. (2002) Iron metabolism in insects. Annu. Rev. Entomol. 47, 535559.
  • [29]
    Kato, Y., Aizawa, T., Hoshino, H., Kawano, K., Nitta, K., Zhang, H. (2002) abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem. J. 361, 221230.
  • [30]
    Hara, S., Yamakawa, M. (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 2992329927.
  • [31]
    Harder, J., Bartels, J., Christophers, E., Schroder, J.M. (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 57075713.
  • [32]
    Hedengren-Olcott, M., Olcott, M.C., Mooney, D.T., Ekengren, S., Geller, B.L., Taylor, B.J. (2004) Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J. Biol. Chem. 279, 2112121127.
  • [33]
    Peschel, A. (2002) How do bacteria resist human antimicrobial peptides Trends Microbiol. 10, 179186.
  • [34]
    Gobert, V., Gottar, M., Matskevich, A.A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J.A., Ferrandon, D. (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302, 21262130.
  • [35]
    Christophides, G.K. et-al (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159165.
  • [36]
    Yoshida, H., Kinoshita, K., Ashida, M. (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 1385413860.
  • [37]
    Michel, T., Reichhart, J.M., Hoffmann, J.A., Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756759.
  • [38]
    Bischoff, V., Vignal, C., Boneca, I.G., Michel, T., Hoffmann, J.A., Royet, J. (2004) Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5, 11751180.
  • [39]
    Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J.H., Caroff, M., Lee, W.J., Mengin-Lecreulx, D., Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478484.
  • [40]
    Choe, K.M., Werner, T., Stoven, S., Hultmark, D., Anderson, K.V. (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359362.
  • [41]
    Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., Ferrandon, D., Royet, J. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640644.
  • [42]
    Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B., Ezekowitz, R.A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644648.
  • [43]
    Takehana, A., Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T., Kurata, S. (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99, 1370513710.
  • [44]
    Lemaitre, B., Reichhart, J.M., Hoffmann, J.A. (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 1461414619.
  • [45]
    Inohara, N., Ogura, Y., Chen, F.F., Muto, A., Nunez, G. (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276, 25512554.
  • [46]
    Liu, C., Gelius, E., Liu, G., Steiner, H., Dziarski, R. (2000) Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J. Biol. Chem. 275, 2449024499.
  • [47]
    Ma, Y.G., Cho, M.Y., Zhao, M., Park, J.W., Matsushita, M., Fujita, T., Lee, B.L. (2004) Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J. Biol. Chem. 279, 2530725312.
  • [48]
    De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M., Lemaitre, B. (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J. 21, 25682579.
  • [49]
    Weber, A.N. et-al (2003) Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794800.
  • [50]
    Levashina, E.A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J.A., Reichhart, J.M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 19171919.
  • [51]
    De Gregorio, E. et-al (2002) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581592.
  • [52]
    Qureshi, S.T., Medzhitov, R. (2003) Toll-like receptors and their role in experimental models of microbial infection. Genes Immun. 4, 8794.
  • [53]
    Dunne, A., Ejdeback, M., Ludidi, P.L., O'Neill, L.A., Gay, N.J. (2003) Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J. Biol. Chem. 278, 4144341451.
  • [54]
    Pujol, N. et-al (2001) A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809821.
  • [55]
    Petersen, U.M., Bjorklund, G., Ip, Y.T., Engstrom, Y. (1995) The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila Cecropin gene expression. Embo J. 14, 31463158.
  • [56]
    Dushay, M.S., Asling, B., Hultmark, D. (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA 93, 1034310347.
  • [57]
    Schroder, N.W. et-al (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278, 1558715594.
  • [58]
    Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., Aderem, A. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 1376613771.
  • [59]
    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443451.
  • [60]
    Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., Akira, S. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933940.
  • [61]
    Yoshimura, A., Lien, E., Ingalls, R.R., Tuomanen, E., Dziarski, R., Golenbock, D. (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 15.
  • [62]
    Barillas-Mury, C., Charlesworth, A., Gross, I., Richman, A., Hoffmann, J.A., Kafatos, F.C. (1996) Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. Embo J. 15, 46914701.
  • [63]
    Kim, D.H. et-al (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623626.
  • [64]
    Sifri, C.D., Begun, J., Ausubel, F.M., Calderwood, S.B. (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect. Immun. 71, 22082217.
  • [65]
    Lundqvist-Gustafsson, H., Norrman, S., Nilsson, J., Wilsson, A. (2001) Involvement of p38-mitogen-activated protein kinase in Staphylococcus aureus-induced neutrophil apoptosis. J. Leukoc. Biol. 70, 642648.
  • [66]
    DeLeo, F.R. (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9, 399413.
  • [67]
    Letterio, J.J., Roberts, A.B. (1998) Regulation of immune responses by TGF-beta. Annu. Rev. Immunol. 16, 137161.
  • [68]
    Newfeld, S.J., Wisotzkey, R.G., Kumar, S. (1999) Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. Genetics 152, 783795.
  • [69]
    Garsin, D.A., Villanueva, J.M., Begun, J., Kim, D.H., Sifri, C.D., Calderwood, S.B., Ruvkun, G., Ausubel, F.M. (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science. 300, 1921.
  • [70]
    Kurz, C.L., Tan, M.W. (2004) Regulation of aging and innate immunity in C. elegans. Aging Cell 3, 185193.
  • [71]
    Meister, M., Lagueux, M. (2003) Drosophila blood cells. Cell. Microbiol. 5, 573580.
  • [72]
    Franc, N.C., Dimarcq, J.L., Lagueux, M., Hoffmann, J., Ezekowitz, R.A. (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431443.
  • [73]
    Vilmos, P., Kurucz, E. (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 5966.
  • [74]
    Jander, G., Rahme, L.G., Ausubel, F.M. (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 38433845.
  • [75]
    Rahme, L.G., Tan, M.W., Le, L., Wong, S.M., Tompkins, R.G., Calderwood, S.B., Ausubel, F.M. (1997) Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94, 1324513250.
  • [76]
    Tan, M.W., Mahajan-Miklos, S., Ausubel, F.M. (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96, 715720.
  • [77]
    Garsin, D.A., Sifri, C.D., Mylonakis, E., Qin, X., Singh, K.V., Murray, B.E., Calderwood, S.B., Ausubel, F.M. (2001) A simple model host for identifying Gram-positive virulence factors. Proc. Natl. Acad. Sci. USA 98, 1089210897.
  • [78]
    O'Quinn, A.L., Wiegand, E.M., Jeddeloh, J.A. (2001) Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell. Microbiol. 3, 381393.
  • [79]
    Labrousse, A., Chauvet, S., Couillault, C., Kurz, C.L., Ewbank, J.J. (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr. Biol. 10, 15431545.
  • [80]
    Joshua, G.W., Karlyshev, A.V., Smith, M.P., Isherwood, K.E., Titball, R.W., Wren, B.W. (2003) A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 32213229.
  • [81]
    Daborn, P.J., Waterfield, N., Blight, M.A., Ffrench-Constant, R.H. (2001) Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J. Bacteriol. 183, 58345839.
  • [82]
    Solomon, J.M., Rupper, A., Cardelli, J.A., Isberg, R.R. (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host–pathogen interactions. Infect. Immun. 68, 29392947.
  • [83]
    Kaito, C., Akimitsu, N., Watanabe, H., Sekimizu, K. (2002) Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb. Pathog. 32, 183190.
  • [84]
    D'Argenio, D.A., Gallagher, L.A., Berg, C.A., Manoil, C. (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 14661471.
  • [85]
    Mansfield, B.E., Dionne, M.S., Schneider, D.S., Freitag, N.E. (2003) Exploration of host–pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell. Microbiol. 5, 901911.
  • [86]
    Dionne, M.S., Ghori, N., Schneider, D.S. (2003) Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 71, 35403550.
  • [87]
    Needham, A.J., Kibart, M., Crossley, H., Ingham, P.W., Foster, S.J. (2004) Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology 150, 23472355.
  • [88]
    Silva, C.P. et-al (2002) Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 4, 329339.
  • [89]
    D'Alencon, E., Piffanelli, P., Volkoff, A.N., Sabau, X., Gimenez, S., Rocher, J., Cerutti, P., Fournier, P. (2004) A genomic BAC library and a new BAC-GFP vector to study the holocentric pest Spodoptera frugiperda. Insect. Biochem. Mol. Biol. 34, 331341.
  • [90]
    Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., Ausubel, F.M. (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell 96, 4756.
  • [91]
    Hodgkin, J., Kuwabara, P.E., Corneliussen, B. (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr. Biol. 10, 16151618.
  • [92]
    Darby, C., Cosma, C.L., Thomas, J.H., Manoil, C. (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 1520215207.
  • [93]
    Aballay, A., Yorgey, P., Ausubel, F.M. (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10, 15391542.
  • [94]
    Gan, Y.H., Chua, K.L., Chua, H.H., Liu, B., Hii, C.S., Chong, H.L., Tan, P. (2002) Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol. Microbiol. 44, 11851197.
  • [95]
    Boman, H.G., Nilsson, I., Rasmuson, B. (1972) Inducible antibacterial defence system in Drosophila. Nature 237, 232235.
  • [96]
    Katzif, S., Danavall, D., Bowers, S., Balthazar, J.T., Shafer, W.M. (2003) The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect. Immun. 71, 43044312.
  • [97]
    Cordwell, S.J., Larsen, M.R., Cole, R.T., Walsh, B.J. (2002) Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148, 27652781.
  • [98]
    Hamamoto, H., Kurokawa, K., Kaito, C., Kamura, K., Manitra Razanajatovo, I., Kusuhara, H., Santa, T., Sekimizu, K. (2004) Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob. Agents Chemother. 48, 774779.
  • [99]
    Bae, T., Banger, A.K., Wallace, A., Glass, E.M., Aslund, F., Schneewind, O., Missiakas, D.M. (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. USA 101, 1231212317.
  • [100]
    Jansen, W.T., Bolm, M., Balling, R., Chhatwal, G.S., Schnabel, R. (2002) Hydrogen peroxide-mediated killing of Caenorhabditis elegans by Streptococcus pyogenes. Infect. Immun. 70, 52025207.
  • [101]
    Cheung, A.L., Bayer, A.S., Zhang, G., Gresham, H., Xiong, Y.Q. (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40, 19.
  • [102]
    Kuroda, M. et-al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 12251240.
  • [103]
    Throup, J.P. et-al (2000) A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35, 566576.
  • [104]
    Shaw, L., Golonka, E., Potempa, J., Foster, S.J. (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150, 217228.
  • [105]
    Giraudo, A.T., Rampone, H., Calzolari, A., Nagel, R. (1996) Phenotypic characterization and virulence of a sae - agr - mutant of Staphylococcus aureus. Can. J. Microbiol. 42, 120123.
  • [106]
    Horsburgh, M.J., Ingham, E., Foster, S.J. (2001) In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J. Bacteriol. 183, 468475.
  • [107]
    Lithgow, J.K., Ingham, E., Foster, S.J. (2004) Role of the hprT ftsH locus in Staphylococcus aureus. Microbiology 150, 373381.
  • [108]
    Somerville, G.A., Chaussee, M.S., Morgan, C.I., Fitzgerald, J.R., Dorward, D.W., Reitzer, L.J., Musser, J.M. (2002) Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect. Immun. 70, 63736382.
  • [109]
    Jonsson, I.M., Arvidson, S., Foster, S., Tarkowski, A. (2004) Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect. Immun. 72, 61066111.
  • [110]
    Karavolos, M.H., Horsburgh, M.J., Ingham, E., Foster, S.J. (2003) Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149, 27492758.
  • [111]
    Chan, P.F., Foster, S.J., Ingham, E., Clements, M.O. (1998) The Staphylococcus aureus alternative sigma factor sigmaB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 180, 60826089.
  • [112]
    Horsburgh, M.J., Aish, J.L., White, I.J., Shaw, L., Lithgow, J.K., Foster, S.J. (2002) sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325–4. J. Bacteriol. 184, 54575467.
  • [113]
    Nicholas, R.O., Li, T., McDevitt, D., Marra, A., Sucoloski, S., Demarsh, P.L., Gentry, D.R. (1999) Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect. Immun. 67, 36673669.
  • [114]
    Schneider, W.P., Ho, S.K., Christine, J., Yao, M., Marra, A., Hromockyj, A.E. (2002) Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect. Immun. 70, 13261333.
  • [115]
    Josefsson, E., Hartford, O., O'Brien, L., Patti, J.M., Foster, T. (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184, 15721580.
  • [116]
    Mazmanian, S.K., Liu, G., Jensen, E.R., Lenoy, E., Schneewind, O. (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97, 55105515.
  • [117]
    Frees, D., Qazi, S.N., Hill, P.J., Ingmer, H. (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48, 15651578.