• Allergy;
  • Bifidobacterium;
  • Escherichia coli;
  • Lactobacillus casei;
  • Immunoglobulin E


This study investigated whether orally administered probiotic bacteria (Bifidobacterium bifidum and Lactobacillus casei) and a gram-negative bacterium (Escherichia coli) function as allergic immune modulators to prevent food allergy, according to the hygiene hypothesis. C3H/HeJ mice were sensitized with ovalbumin (OVA) and cholera toxin for 5 weeks. After sensitization, the OVA-induced mice that were not treated with bacteria had significantly increased levels of OVA-specific IgE, total IgE, and IgG1 in sera, as well as scab-covered tails. In comparison, groups treated with B. bifidum BGN4 (BGN4), L. casei 911 (L. casei), or Escherichia coli MC4100 (E. coli) had decreased levels of OVA-specific IgE, total IgE, and IgG1, and decreased levels of mast cell degranulation and tail scabs. OVA-specific IgA levels were decreased in BGN4- and L. casei-treated groups. In conclusion, administration of E. coli, BGN4, or L. casei decreased the OVA-induced allergy response. However, a normal increase in body weight was inhibited in the E. coli-treated mice and in the montreated mice groups during allergy sensitization. Thus, BGN4 and L. casei appear to be useful probiotic bacteria for the prevention of allergy.