SEARCH

SEARCH BY CITATION

References

  • [1]
    Biely, P. (1993) Enzymological aspects of the production of microbial hemicellulases. In: Hemicellulose and Hemicellulases (Coughlan, M.P., Hazlewood, G.P., Eds.), pp.29–51 Portland Press, London.
  • [2]
    Coutinho, P.M., Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach. In: Recent Advances in Carbohydrate Bioengineering (Gilbert, H.J., Davies, G.J., Henrissat, B., Svensson, B., Eds.), pp.3–12 The Royal Society, Cambridge.
  • [3]
    Biely, P., Vrsansaka, M., Tenkanen, M., Kluepfel, D. (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151166.
  • [4]
    Davies, G., Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853859.
  • [5]
    Hessing, J.G.M., van Rotterdam, C., Verbakel, J.M.A., Roza, M., Maat, J., van Gorcom, R.F.M., van den Hondel, C.A.M.J.J. (1994) Isolation and characterization of a1,4-β-endoxylanase gene of A. Awamori. Curr. Genet. 26, 228232.
  • [6]
    Berrin, J.G., Williamson, G., Puigserver, A., Chaix, J.C., McLauchlan, W.R., Juge, N. (2000) High-level production of recombinant fungal endo-β-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Prot. Exp. Purif. 19, 179187.
  • [7]
    Krengle, U., Dijkstra, B.W. (1996) Three-dimensional structure of endo-1,4-β-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J. Mol. Biol. 263, 7078.
  • [8]
    Törrönen, A., Harkki, A., Rouvinen, J. (1994) Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 13, 24932501.
  • [9]
    Tahir, T.A., Berrin, J.G., Flatman, R., Roussel, A., Roepstorff, P., Williamson, G., Juge, N. (2002) Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. J. Biol. Chem. 277, 4403544043.
  • [10]
    Christophersen, C., Andersen, E., Jacobsen, T.S., Wagner, P. (1997) Xylanases in wheat separation. Starch/Stärke 1, 512.
  • [11]
    Bedford, M.R., Classen, H.L. (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye fed broiler chicks. In: Xylan and Xylanases (Visser, J., Beldman, G., Kusters-van Somerson, M.A., Voragen, A.G.J., Eds.), pp.361–370 Elsevier Science Publishers B.V., Amsterdam.
  • [12]
    Graham, H., Inborr, J. (1992) Application of xylanase-based enzymes in commercial pig and poultry production. In: Xylans and Xylanases (Visser, J., Beldman, G., Kusters-van Someren, M.A., Voragen, A.G.J., Eds.), pp.535–538 Elsevier Science Publishers B.V., Amsterdam.
  • [13]
    Debyser, W., Derdelinckx, G., Delcour, J.A. (1997) Arabinoxylan solubilisation and inhibition of the barley malt xylanolytic system by wheat during brewing with wheat wholemeal adjunct: evidence for a new class of enzyme inhibitors. J. Am. Soc. Brew. Chem. 55, 153156.
  • [14]
    Rouau, X., Surget, A. (1998) Evidence for the presence of a pentosanase inhibitor in wheat flours. J. Cereal Sci. 28, 6370.
  • [15]
    McLauchlan, W.R., Garcia-Conesa, M.T., Williamson, G., Roza, M., Ravenstein, P., Maat, J. (1999) A novel class of protein from wheat which inhibits xylanases. Biochem. J. 338, 441446.
  • [16]
    Juge, N., Payan, F., Williamson, G. (2004) XIP-I, a xylanase inhibitor from wheat: a novel protein function. Biochim. Biophys. Acta 1696, 203211.
  • [17]
    Debyser, W., Peumans, W.J., Van Damme, E.J.M., Delcour, J.A. (1999) TAXI, a new class of enzyme inhibitors affecting bread volume. J. Cereal Sci. 30, 3943.
  • [18]
    Gebruers, K., Brijs, K., Courtin, C.M., Fierens, K., Goesaert, H., Raedschelders, G., Robben, J., Sorensen, J.F., Van Campenhout, S., Delcour, J.A. (2004) Properties of TAXI-type endoxylanase inhibitors. Biochim. Biophys. Acta 1696, 213221.
  • [19]
    Gebruers, K., Debyser, W., Goesaert, H., Proost, P., Van Damme, J., Delcour, J.A. (2001) Triticum aestivum L. xylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem. J. 353, 239244.
  • [20]
    Flatman, R., McLauchlan, W.R., Juge, N., Furniss, C.S., Berrin, J.G., Hughes, R.K., Manzanares, P., Ladbury, J.E., O'Brien, R., Williamson, G. (2002) Interactions defining the specificity between fungal xylanases and the wheat proteinaceous inhibitor, XIP-I. Biochem. J. 365, 773781.
  • [21]
    Juge, N., Williamson, G., Puigserver, A., Cummings, N.J., Connerton, I.F., Faulds, C.B. (2001) High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res. 1, 127132.
  • [22]
    Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • [23]
    Bailey, M.J., Biely, P., Poutanen, K. (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257270.
  • [24]
    Törrönen, A., Rouvinen, J. (1995) Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34, 847856.
  • [25]
    Joshi, M.D., Sidhu, G., Pot, I., Brayer, G.D., Withers, S.G., McIntosh, L.P. (2000) Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 2999, 255279.
  • [26]
    Sapag, A., Wouters, J., Lambert, C., de Ioannes, P., Eyzaguirre, J., Depiereux, E. (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95, 109131.
  • [27]
    Fushinobu, S., Ito, K., Konno, M., Wakagi, T., Matsuzawa, H. (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11, 11211128.
  • [28]
    Wakarchuk, W.W., Campbell, R.L., Sung, W.L., Davoodi, J., Yaguchi, M. (1994) Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 3, 467475.
  • [29]
    Joshi, M.D., Sidhu, G., Nielsen, J.E., Brayer, G.D., Withers, S.G., McIntosh, L.P. (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40, 1011510139.
  • [30]
    de Lemos Esteves, F., Ruelle, V., Lamotte-Brasseur, J., Quinting, B., Frere, J.M. (2004) Acidophilic adaptation of family 11 endo-β-1,4-xylanases: modeling and mutational analysis. Protein Sci. 13, 12091218.
  • [31]
    Payan, F., Flatman, R., Porciero, S., Williamson, G., Juge, N., Roussel, A. (2003) Structural analysis of XIP-I, a xylanase proteinaceous inhibitor from wheat. Biochem. J. 372, 399405.