• [1]
    Halliwell, B., Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine, third ed. Oxford University Press Inc., New York, USA.
  • [2]
    Pedrajas, J.R., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, J.A., Spyrou, G. (2000) Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275, 1629616301.
  • [3]
    Monteiro, G., Kowaltowski, A.J., Barros, M.H., Netto, L.E.S. (2004) Glutathione and thioredoxin peroxidases mediate susceptibility of yeast mitochondria to Ca2+-induced damage. Arch. Biochem. Biophys. 425, 1424.
  • [4]
    Thevelein, J.M. (1994) Signal transduction in yeast. Yeast 10, 17531790.
  • [5]
    Carlson, M. (1998) Regulation of glucose utilization in yeast. Curr. Opin. Genet. Dev. 8, 560564.
  • [6]
    Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334361.
  • [7]
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 42414257.
  • [8]
    Ashe, M.P., de Long, S.K., Sachs, A.B. (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell. 11, 833848.
  • [9]
    Thevelein, J.M., de Winde, J.H. (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33, 904918.
  • [10]
    Geladé, R., Van de Velde, S., Van Dijck, P., Thevelein, J.M. Multi-level response of the yeast genome to glucose. Genome Biol. 4, 2003, 233.
  • [11]
    Görner, W., Durchschlag, E., Martinez-Pastor, M.T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., Schuller, C. (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12, 586597.
  • [12]
    Smith, A., Ward, M.P., Garrett, S. (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17, 35563564.
  • [13]
    Schmelzle, T., Hall, M.N. (2000) TOR, a central controller of cell growth. Cell 103, 253262.
  • [14]
    Rohde, J.R., Cardenas, M.E. (2004) Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr. Top. Microbiol. Immunol. 279, 5372.
  • [15]
    Schmidt, A., Beck, T., Koller, A., Kunz, J., Hall, M.N. (1998) The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17, 69246931.
  • [16]
    Werner-Washburne, M., Braun, E.L., Crawford, M.E., Peck, V.M. (1996) Stationary phase in Saccharomyces cerevisiae. Mol. Microbiol. 19, 11591166.
  • [17]
    Görner, W., Durchschlag, E., Wolf, J., Brown, E.L., Ammerer, G., Ruis, H., Schuller, C. (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J. 21, 135144.
  • [18]
    Jacquet, M., Renault, G., Lallet, S., de Mey, J., Goldbeter, A. (2003) Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497505.
  • [19]
    Schmitt, A.P., McEntee, K. (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 57775782.
  • [20]
    Monteiro, G., Pereira, G.A.G., Netto, L.E.S. (2002) Regulation of mitochondrial thioredoxin peroxidase I expression by two different pathways: one dependent on cAMP and the other on heme. Free Rad. Biol. Med. 32, 278288.
  • [21]
    Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., Jacquet, M. (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180, 10441052.
  • [22]
    Sun, J., Kale, S.P., Childress, A.M., Pinswasdi, C., Jazwinski, S.M. (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269, 1863818645.
  • [23]
    Helliwell, S.B., Wagner, P., Kunz, J., Deuter-Reinhard, M., Henriquez, R., Hall, M.N. (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell. 5, 105118.
  • [24]
    Schmidt, A., Kunz, J., Hall, M.N. (1996) TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl. Acad. Sci. USA 93, 1378013785.
  • [25]
    Ausubel, F.M., Brent, R., Kingstone, R.E., Moore, D.D., Seidman, J.A., Smith, J.A., Struhl, K. Current Protocols in Molecular Biology, 1998, Wiley, New York, 2.5.1–2.6.7, 2.9.1–2.10.8, 3.0.3–3.1.6, 3.4.1–3.16.10, 13.0.3–13.13.7.
  • [26]
    Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J. (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299310.
  • [27]
    Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 5159.
  • [28]
    Hong, S.K., Cha, M.K., Choi, Y.S., Kim, W.C., Kim, I.H. (2002) Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II. J. Biol. Chem. 277, 1210912117.
  • [29]
    Rep, M., Krantz, M., Thevelein, J.M., Hohmann, S. (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 82908300.
  • [30]
    Hasan, R., Leroy, C., Isnard, A.D., Labarre, J., Boy-Marcotte, E., Toledano, M.B. (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol. Microbiol. 45, 233241.
  • [31]
    Schmelzle, T., Beck, T., Martin, D.E., Hall, M.N. (2004) Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell. Biol. 24, 338351.
  • [32]
    Beck, T., Hall, M.N. (1999) The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689692.
  • [33]
    Mayordomo, I., Estruch, F., Sanz, P. (2002) Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J. Biol. Chem. 277, 3565035656.
  • [34]
    Jazwinski, S.M. (1999) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol. Aging 20, 471478.
  • [35]
    Hardwick, J.S., Kuruvilla, F.G., Tong, J.K., Shamji, A.F., Schreiber, S.L. (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96, 1486614870.
  • [36]
    Cherkasova, V.A., Hinnebusch, A.G. (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 17, 859872.
  • [37]
    Pedruzzi, I., Dubouloz, F., Cameroni, E., Wanke, V., Roosen, J., Winderickx, J., de Virgilio, C. (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell. 12, 16071613.
  • [38]
    Jacinto, E., Hall, M.N. (2003) Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117126.
  • [39]
    Rhee, S.G., Kang, S.W., Netto, L.E., Seo, M.S., Stadtman, E.R. (1999) A family of novel peroxidases, peroxiredoxins. Biofactors 10, 207209.
  • [40]
    Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M. (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 3061530618.
  • [41]
    Shih, S.F., Wu, Y.H., Hung, C.H., Yang, H.Y., Lin, J.Y. (2001) Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J. Biol. Chem. 276, 2187021877.
  • [42]
    Damdimopoulos, A.E., Miranda-Vizuete, A., Pelto-Huikko, M., Gustafsson, J.A., Spyrou, G. (2002) Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem. 277, 3324933257.