SEARCH

SEARCH BY CITATION

References

  • [1]
    Ikeda, M. (2003) Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79, 235.
  • [2]
    Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B.J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Krämer, R., Linke, B., McHardy, A.C., Meyer, F., Möckel, B., Pfefferle, W., Pühler, A., Rey, D.A., Rückert, C., Rupp, O., Sahm, H., Wendisch, V.F., Wiegräbe, I., Tauch, A. (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J. Biotechnol. 104, 525.
  • [3]
    Krömer, J.O., Sorgenfrei, O., Klopprogge, K., Heinzle, E., Wittmann, C. (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186, 17691784.
  • [4]
    Parche, S., Burkovski, A., Sprenger, G.A., Weil, B., Krämer, R., Titgemeyer, F. (2001) Corynebacterium glutamicum: a dissection of the PTS. J. Mol. Microbiol. Biotechnol. 3, 423428.
  • [5]
    Mori, M., Shiio, I. (1987) Pyruvate formation and sugar metabolism in an amino acid-producing bacterium, Brevibacterium flavum. Agr. Biol. Chem. 51, 129138.
  • [6]
    Dominguez, H., Lindley, N.D. (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl. Environ. Microbiol. 62, 38783880.
  • [7]
    Dominguez, H., Rollin, C., Guyonvarch, A., Guerquin-Kern, J.L., Cocaign-Bousquet, M., Lindley, N.D. (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur. J. Biochem. 254, 96102.
  • [8]
    Kiefer, P., Heinzle, E., Wittmann, C. (2002) Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 28, 338343.
  • [9]
    Kiefer, P., Heinzle, E., Zelder, O., Wittmann, C. (2004) Comparative metabolic flux analysis of lysine producing Cornebacterium glutamicum cultured in glucose or fructose. Appl. Environ. Microbiol. 70, 229239.
  • [10]
    Kotrba, P., Inui, M., Yukawa, H. (2001) The ptsI gene encoding enzyme I of the phosphotransferase systems of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 289, 13071313.
  • [11]
    Kotrba, P., Inui, M., Yukawa, H. (2003) A single V317A or V317M substitution in enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149, 15691580.
  • [12]
    Lee, J.K., Sung, M.H., Yoon, K.H., Yu, J.H., Oh, T.K. (1994) Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence. FEMS Microbiol. Lett. 119, 137145.
  • [13]
    Lee, H.W., Pan, J.G., Lebeault, J.M. (1998) Enhanced l-lysine production in threonine-limited continuous culture of Corynebacterium glutamicum by using gluconate as a secondary carbon source with glucose. Appl. Microbiol. Biotechnol. 49, 915.
  • [14]
    Liebl, W., Bayerl, A., Schein, B., Stillner, U., Schleifer, K. (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol. Lett. 53, 299303.
  • [15]
    Simon, R., Prifer, U., Pühler, A. (1983) A broad host range mobilization system for in vitro genetic engineering transposon mutagenesis in gram-negative bacteria. Biotechnology 1, 784794.
  • [16]
    Schäfer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A.H., Pühler, A. (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J. Bacteriol. 172, 16631666.
  • [17]
    Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., Pühler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 6973.
  • [18]
    Tangney, M., Mitchell, W.J. (2000) Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J. Mol. Microbiol. Biotechnol. 2, 7180.
  • [19]
    Jakoby, M.J., Ngouto-Nkili, C.E., Burkovski, A. (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechniques 13, 437441.
  • [20]
    Sprenger, G.A., Lengeler, J.W. (1988) Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J. Gen. Microbiol. 134, 16351644.
  • [21]
    Veiga-da-Cunha, M., Hoyoux, A., Schaftingen, Van E. (2000) Overexpression and purification of fructose-1-phosphate kinase from Escherichia coli: application to the assay of fructose-1-phosphate. Protein Expres. Purif. 19, 4852.
  • [22]
    Shiio, I., Sugimoto, S.I., Kawamura, K. (1990) Effects of carbon source sugars on the yield of amino acids production and sucrose metabolism in Brevibacterium flavum. Agr. Biol. Chem. 54, 15131519.
  • [23]
    Park, S.Y., Kim, H.K., Yoo, S.K., Oh, T.K., Lee, J.K. (2000) Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol. Lett. 188, 209215.
  • [24]
    Parche, S., Thomae, A.W., Schlicht, M., Titgemeyer, F. (2001) Corynebacterium diphtheriae: a PTS view to the genome. J. Mol. Microbiol. Biotechnol. 3, 415422.
  • [25]
    Erni, B., Zanolari, B. (1986) Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J. Biol. Chem. 261, 1639816403.
  • [26]
    Stulke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A., Rapoport, G. (1997) Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol. 25, 6578.
  • [27]
    Hvorup, R., Chang, A. M.H. Saier Jr. (2003) Bioinformatic analyses of the bacterial l-ascorbate phosphotransferase system permease family. J. Mol. Microbiol. Biotechnol. 6, 191205.