• [1]
    Watnick, P., Kolter, R. (2000) Biofilm, city of microbes. J. Bacteriol. 182, 26752679.
  • [2]
    Hall-Stoodley, L., Costerton, J.W., Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95108.
  • [3]
    O'Toole, G.A., Kaplan, H.B., Kolter, R. (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 4979.
  • [4]
    Sutherland, I.W. (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol. 9, 222227.
  • [5]
    Weiner, R., Seagren, E., Arnosti, C., Quintero, E. (1999) Bacterial survival in biofilms: probes for exopolysaccharide and its hydrolysis, and measurements of intra- and interphase mass fluxes. Meth. Enzymol. 310, 403426.
  • [6]
    Solano, C., García, B., Valle, J., Berasain, C., Ghigo, J.M., Gamazo, C., Lasa, I. (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43, 793808.
  • [7]
    Jackson, S., Burrows, T.W. (1956) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br. J. Exp. Pathol. 37, 570576.
  • [8]
    Surgalla, M.J., Beesley, E.D. (1969) Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl. Microbiol. 18, 834837.
  • [9]
    Bibikova, V.A., Klassovskii, L.N.The Transmission of Plague by Fleas 1974 Meditsina Moscow p. 189 (in Russian)
  • [10]
    Hinnebusch, B.J., Perry, R.D., Schwan, T.G. (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367370.
  • [11]
    Kutyrev, V.V., Filippov, A.A., Oparina, O.S., Protsenko, O.A. (1992) Analysis of Yersinia pestis chromosomal determinants Pgm+ and Psts associated with virulence. Microb. Pathog. 12, 177186.
  • [12]
    Bacot, A.W., Martin, C.J. (1914) LXVII. Observations on the mechanism of the transmission of plague by fleas. J. Hygiene 13 (Plague Suppl. 3), 423439.
  • [13]
    Pollitzer, R. (1954) Plague. W.H.O. Monogr. Ser. 22, 1698.
  • [14]
    Jarrett, C.O. (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783792.
  • [15]
    Pendrak, M.L., Perry, R.D. (1993) Proteins essential for expression of the Hms+ phenotype of Yersinia pestis. Mol. Microbiol. 8, 857864.
  • [16]
    Perry, R.D., Pendrak, M.L., Schuetze, P. (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J. Bacteriol. 172, 59295937.
  • [17]
    J.W. Lillard Jr. Fetherston, J.D., Pedersen, L., Pendrak, M.L., Perry, R.D. (1997) Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193, 1321.
  • [18]
    Jones, H.A. J.W. Lillard Jr. Perry, R.D. (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 21172128.
  • [19]
    Wang, X. J.F. Preston III Romeo, T. (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol. 186, 27242734.
  • [20]
    Kirillina, O., Fetherston, J.D., Bobrov, A.G., Abney, J., Perry, R.D. (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 54, 7588.
  • [21]
    Perry, R.D., Bobrov, A.G., Kirillina, O., Jones, H.A., Pedersen, L.L., Abney, J., Fetherston, J.D. (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J. Bacteriol. 186, 16381647.
  • [22]
    Hare, J.M., McDonough, K.A. (1999) High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J. Bacteriol. 181, 48964904.
  • [23]
    Galperin, M.Y., Nikolskaya, A.N., Koonin, E.V. (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203, 1121.
  • [24]
    Tal, R. (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180, 44164425.
  • [25]
    Ross, P. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279281.
  • [26]
    Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., Römling, U. (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 14521463.
  • [27]
    Spiers, A.J., Kahn, S.G., Bohannon, J., Travisano, M., Rainey, P.B. (2002) Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161, 3346.
  • [28]
    D'Argenio, D.A., Calfee, M.W., Rainey, P.B., Pesci, E.C. (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184, 64816489.
  • [29]
    García, B., Latasa, C., Solano, C., Portillo, F.G.-d., Gamazo, C., Lasa, I. (2004) Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol. Microbiol. 54, 264277.
  • [30]
    Paul, R., Weiser, S., Amiot, N.C., Chan, C., Schirmer, T., Giese, B., Jenal, U. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18, 715727.
  • [31]
    Tischler, A.D., Camilli, A. (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53, 857869.
  • [32]
    Simm, R., Morr, M., Kader, A., Nimtz, M., Römling, U. (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 53, 11231134.
  • [33]
    Ryjenkov, D.A., Tarutina, M., Moskvin, O.V., Gomelsky, M. (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187, 17921798.
  • [34]
    Drenkard, E., Ausubel, F.M. (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740743.
  • [35]
    Bomchil, N., Watnick, P., Kolter, R. (2003) Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185, 13841390.
  • [36]
    Boles, B.R., McCarter, L.L. (2002) Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. 184, 59465954.
  • [37]
    Straley, S.C., Bowmer, W.S. (1986) Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51, 445454.
  • [38]
    O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., Kolter, R. (1999) Genetic approaches to study of biofilms. Meth. Enzymol. 310, 91109.
  • [39]
    Chang, A.L. (2001) Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemisty 40, 34203426.
  • [40]
    Rodríguez-López, M., Baroja-Fernández, E., Zandueta-Criado, A., Moreno-Bruna, B., Muñoz, F.J., Akazawa, T., Pozueta-Romero, J. (2001) Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett. 490, 4448.
  • [41]
    Ross, P. (1990) The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem. 265, 1893318943.
  • [42]
    Möller, S., Croning, M.D.R., Apweiler, R. (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646653.
  • [43]
    D'Argenio, D.A., Miller, S.I. (2004) Cyclic di-GMP as a bacterial second messenger. Microbiology 150, 24972502.
  • [44]
    Römling, U. (2002) Molecular biology of cellulose production in bacteria. Res. Microbiol. 153, 205212.
  • [45]
    Jenal, U. (2004) Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria. Curr. Opin. Microbiol. 7, 185191.
  • [46]
    Gijsbers, R., Aoki, J., Arai, H., Bollen, M. (2003) The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett. 538, 6064.
  • [47]
    Vogel, A., Schilling, O., Niecke, M., Bettmer, J., Meyer-Klaucke, W. (2002) ElaC encodes a novel binuclear zinc phosphodiesterase. J. Biol. Chem. 277, 2907829085.
  • [48]
    Yakunin, A.F., Proudfoot, M., Kuznetsova, E., Savchenko, A., Brown, G., Arrowsmith, C.H., Edwards, A.M. (2004) The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2′,3′-cyclic phosphodiesterase, 2′-nucleotidase, and phosphatase activities. J. Biol. Chem. 279, 3681936827.
  • [49]
    Chen, S., Yakunin, A.F., Kuznetsova, E., Busso, D., Pufan, R., Proudfoot, M., Kim, R., Kim, S.-H. (2004) Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii. J. Biol. Chem. 279, 3185431862.
  • [50]
    Galperin, M.Y., Bairoch, A., Koonin, E.V. (1998) A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci. 7, 18291835.
  • [51]
    Yang, M., Kirley, T.L. (2004) Site-directed mutagenesis of human soluble calcium-activated nucleotidase 1 (hSCAN-1): identification of residues essential for enzyme activity and the Ca2+-induced conformational change. Biochemistry 43, 91859194.
  • [52]
    Deng, W. (2002) Genome Sequence of Yersinia pestis KIM. J. Bacteriol. 184, 46014611.
  • [53]
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1987) Current Protocols in Molecular Biology. Wiley, New York.
  • [54]
    Guzman, L.M., Belin, D., Carson, M.J., Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 41214130.
  • [55]
    Roger, S., Fetherston, J.D., Kader, A., Römling, U. and Perry, R.D. Pheontypic convergence mediated by GGDEF-domain (submitted)