• [1]
    Ballongue, J. (1998) Bifidobacteria and probiotic action. In: Lactic acid bacteria, microbiology and functional aspects (Salminen, S., Von Wright, A., Eds.), pp.519–587 Marcel Dekker, New York.
  • [2]
    Bengmark, S. (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 27.
  • [3]
    Ouwehand, A.C., Kirjavainen, P.V., Shortt, C., Salminen, S. (1999) Probiotics: mechanisms and established effects. Int. Dairy J. 9, 4352.
  • [4]
    Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, B., Zwahlen, M.-C., Desiere, F., Bork, P., Delley, M., Pridmore, M.D., Arigoni, F. (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastroinstestinal tract. Proc. Natl. Acad. Sci. USA 99, 1442214427.
  • [5]
    Tannock, G.W. (1999) Microecology of lactobacilli and bifidobacteria inhabiting the digestive tract: essential knowledge for successful probiotic research. In: Probiotics, other nutritional factors, and intestinal microflora (Hanson, L.A., Yolken, R.H., Eds.), pp.17–31 Nestlé Nutrition Services, Lippincott-Raven, Philadelphia, PA.
  • [6]
    Schmidt, G., Zink, R. (2002) Basic features of the stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. Int. J. Food Microbiol. 55, 4145.
  • [7]
    Ventura, M., Canchaya, C., Zink, R., Fitzgerald, G.F., Van Sinderen, D. (2004) Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional and phylogenetic analyses. Appl. Environ. Microbiol. 70, 61976209.
  • [8]
    Ventura, M., Zink, R., Fitzgerald, G.F., Van Sinderen, D. (2005) Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in Bifidobacterial tracing. Appl. Environ. Microbiol. 71, 487500.
  • [9]
    Vitali, B., Wasinger, V., Brigidi, P., Guilhaus, M. (2005) A proteomic view of Bifidobacterium infantis generated by multi-dimensional chromatography coupled with tandem mass spectrometry. Proteomics 5, 18591867.
  • [10]
    Marvin-Guy, L.F., Parche, S., Wagnière, J., Moulin, R., Zink, R., Kussmann, M., Fay, L.B. (2004) Rapid identification of stress-related fingerprint from whole bacterial cells of Bifidobacterium lactis using matrix assisted laser desorption/ionization mass spectrometry. Am. Soc. Mass Spectrom. 15, 12221227.
  • [11]
    Shevchenko, A., Wilm, M., Vorm, O., Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850858.
  • [12]
    Smeds, A., Varmanen, P., Palva, A. (1998) Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J. Bacteriol. 180, 61486153.
  • [13]
    Perrin, S., Warchol, M., Grill, J.P., Schneider, F. (2001) Fermentation of fructo-oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J. Appl. Microbiol. 90, 859865.
  • [14]
    Chervaux, C., Ehrlich, S.D., Maguin, E. (2000) Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. 66, 53065311.
  • [15]
    Partanen, L., Marttinen, N., Alatossava, T. (2001) Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol. 24, 500506.
  • [16]
    Rigoulay, C., Poquet, I., Madsen, S.M., Gruss, A. (2004) Expression of the Staphylococcus aureus surface proteins HtrA1 and HtrA2 in Lactococcus lactis. FEMS Microbiol. Lett. 237, 279288.
  • [17]
    Pallen, M.J., Wren, B.W. (1997) The HtrA family of serine proteases. Mol. Microbiol. 26, 209221.
  • [18]
    Antelmann, H., Darmon, E., Noone, D., Veening, J.W., Westers, H., Bron, S., Kuipers, O.P., Devine, K.M., Hecker, M., Van Dijl, J.M. (2003) The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol. Microbiol. 49, 143156.
  • [19]
    Helmann, J.D., Wu, M.F., Kobel, P.A., Gamo, F.J., Wilson, M., Morshedi, M.M., Navre, M., Paddon, C. (2001) Global transcriptional response of Bacillus subtilis to heat shock. J. Bacteriol. 183, 73187328.
  • [20]
    Johnson, K., Charles, I., Dougan, G., Pickard, D., O'Gaora, P., Costa, G., Ali, T., Miller, I., Hormaeche, C. (1991) The role of a stress-response protein in Salmonella typhimurium virulence. Mol. Microbiol. 5, 401407.
  • [21]
    Cortes, G., de Astorza, B., Benedi, V.J., Alberti, S. (2002) Role of the htrA gene in Klebsiella pneumoniae virulence. Infect. Immun. 70, 47724776.
  • [22]
    Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A., Gruss, A. (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 35, 10421051.
  • [23]
    Foucaud-Scheunemann, C., Poquet, I. (2003) HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol. Lett. 224, 5359.
  • [24]
    Utaida, S., Dunman, P.M., Macapagal, D., Murphy, E., Projan, S.J., Singh, V.K., Jayaswal, R.K., Wilkinson, B.J. (2003) Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149, 27192732.
  • [25]
    Rigoulay, C., Entenza, J.M., Halpern, D., Widmer, E., Moreillon, P., Poquet, I., Gruss, A. (2005) Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Inf. Immun. 73, 563572.
  • [26]
    Flahaut, S., Hartke, A., Giard, J.C., Benachour, A., Boutibonnes, P., Auffray, Y. (1996) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett. 138, 4954.
  • [27]
    Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., Jan, G. (2003) Susceptibility and adaptive response to bile salts in Probionibacterium freudenreichii: physiological and proteomic analysis. Appl. Environ. Microbiol. 69, 38093818.
  • [28]
    Leverrier, P., Vissers, J.P.C., Rouault, A., Boyava, P., Jan, G. (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Probionibacterium freudenreichii. Arch. Microbiol. 181, 215230.
  • [29]
    Rosen, R., Becher, D., Büttner, K., Biran, D., Hecker, M. (2004) Highly phosphorylated bacterial proteins. Proteomics 4, 30683077.