• [1]
    O'Donnell, K., Cigelnik, E., Casper, H.H. (1998) Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet Biol. 23, 5767.
  • [2]
    O'Donnell, K., Nirenberg, H.I., Aoki, T., Cigelnik, E. (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41, 6178.
  • [3]
    Stenroos, S., Hyvönen, J., Myllys, L., Thell, A., Ahti, T. (2002) Phylogeny of the genus Cladonia (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18, 237278.
  • [4]
    May, G.S., Tsang, M.L., Smith, H., Fidel, S., Morris, N.R. (1987) Aspergillus nidulans beta-tubulin genes are unusually divergent. Gene 55, 231243.
  • [5]
    Smith, H.A., Allaudeen, H.S., Whitman, M.H., Koltin, Y., Gorman, J.A. (1988) Isolation and characterization of a beta-tubulin gene from Candida albicans. Gene 63, 5363.
  • [6]
    Buhr, T.L., Dickman, M.B. (1993) Isolation and characterization of a β-tubulin-encoding gene from Colletotrichum gloeosporioides f. sp. aeschynomene. Gene 124, 121125.
  • [7]
    Lee, S., Kim, J., Fung, S., Breuil, C. (2003) A PCR-RFLP marker distinguishing Ophiostoma clavigerum from morphologically similar Leptographium species associated with bark beetles. Can. J. Bot. 81, 11041112.
  • [8]
    Peever, T.L., Su, G., Carpenter-Boggs, L., Timmer, L.W. (2004) Molecular systematics of citrus-associated Alternaria species. Mycologia 96, 119134.
  • [9]
    Seip, E.R., Woloshuk, C.P., Payne, G.A., Curtis, S.E. (1990) Isolation and sequence analysis of a β-tubulin gene from Aspergillus flavus and its use as a selectable marker. Appl. Environ. Microbiol. 56, 36863692.
  • [10]
    Tooley, P.W., Goley, E.D., Carras, M.M., Frederick, R.D., Weber, E.L., Kuldau, G.A. (2001) Characterization of Clavicepts species pathogenic on sorghum by sequence analysis of the β-tubulin gene intron 3 region and EF-1α gene intron 4. Mycologia 93, 541551.
  • [11]
    Venter, M., Myburg, H., Wingfield, B.D., Coutinho, T.A., Wingfield, M.J. (2002) A new species of Cryphonectria from South Africa and Australia, pathogenic to Eucalyptus. Sydowia 54, 98117.
  • [12]
    Nowak, C., Kuck, U. (1994) Development of an homologous transformation system for Acremonium chrysogenum based on the beta-tubulin gene. Curr. Genet. 25, 3440.
  • [13]
    Orbach, M.J., Porro, E.B., Yanofsky, C. (1986) Cloning and characterization of the gene for β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol. Cell. Biol. 6, 24522461.
  • [14]
    Scharen, A.L. and Sanderson, F.R. (1985) Identification, distribution and nomenclature of the Septoria species that attack cereals. pp. 37–41 In: Septoria of cereals (Scharen, A.L., Ed.), USDA-ARS, ARS-12, p. 116. Gustav Fischer and Jena.
  • [15]
    Sprague, R.Diseases of cereals and grasses in North America 1950 The Ronald Press Co. New York 538pp
  • [16]
    Hedjaroude, G.A. (1968) Études taxonomiques sur les Phaeosphaeria Miyake et leurs formes viosines (Ascomycètes). Sydowia 22, 57107.
  • [17]
    Müller, E. (1952) Pilzliche Erreger der Getreideblattdürre. Phytopath. Z. 19, 403416.
  • [18]
    Cunfer, B.M. (1997) Taxonomy and nomenclature of Septoria and Stagonospora species on small grain cereals. Plant Dis. 81, 427428.
  • [19]
    Cunfer, B.M. (2000) Stagonospora and Septoria diseases of barley, oat, and rye. 2000. Can. J. Plant Pathol. 22, 332348.
  • [20]
    Cunfer, B.M., Ueng, P.P. (1999) Taxonomy and identification of Septoria and Stagonospora species on small-grain cereals. Annu. Rev. Phytopathol. 37, 267284.
  • [21]
    Richardson, M.J., Noble, M. (1970) Septoria species on cereals – a note to aid their identification. Plant Pathol. 19, 159163.
  • [22]
    Holmes, S.J.I., Colhoun, J. (1970) Septoria nodorum as a pathogen of barley. Trans. Br. Mycol. Soc. 55, 321325.
  • [23]
    Smedegård-Petersen, V. (1974) Leptosphaeria nodorum (Septoria nodorum), a new pathogen on barley in Denmark, and its physiologic specialization on barley and wheat. Friesia 10, 251264.
  • [24]
    Meehan, F., Murphy, H.C.Septoria avenae on oats in Iowa Phytopathology 39 1949 15
  • [25]
    Shaw, D.E. (1957) Studies on Leptosphaeria avenaria f. sp. avenaria. Can. J. Bot. 35, 97112.
  • [26]
    Weber, G.F. (1922) Septoria diseases of cereals. I. Speckled blotch of oats caused by Leptosphaeria. Phytopathology 12, 449470.
  • [27]
    Ueng, P.P., Cunfer, B.M., Alano, A.S., Youmans, J.D., Chen, W. (1995) Correlation between molecular and biological characters in identifying the wheat and barley biotypes of Stagonospora nodorum. Phytopathology 85, 4452.
  • [28]
    Ueng, P.P., Subramaniam, K., Chen, W., Arseniuk, E., Wang, L., Cheung, A.M., Hoffmann, G.M., Bergstrom, G.C. (1998) Intraspecific genetic variation of Stagonospora avenae and its differentiation from S. nodorum. Mycol. Res. 102, 607614.
  • [29]
    Ueng, P.P., Dai, Q., Cui, K., Czembor, P.C., Cunfer, B.M., Tsang, H., Arseniuk, E., Bergstrom, G.C. (2003) Sequence diversity of mating-type genes in Phaeosphaeria avenaria. Curr. Genet. 43, 121130.
  • [30]
    Ueng, P.P., Chen, W. (1994) Genetic differentiation between Phaeosphaeria nodorum and P. avenaria using restriction fragment length polymorphisms. Phytopathology 84, 800806.
  • [31]
    Ueng, P.P., Reszka, E., Chung, K.R., Arseniuk, E., Krupinsky, J.M. (2003) Comparison of glyceraldehyde-3-phosphate dehydrogenase genes in Phaeosphaeria nodorum and P. avenaria species. Plant Pathol. Bull. 12, 255268.
  • [32]
    Shearer, B.L., Skovmand, B., Wilcoxson, R.D. (1977) Hordeum jubatum as a source of inoculum of Septoria avenae f. sp. triticea and S. passerinii. Phytopathology 67, 13381341.
  • [33]
    Cooley, R.N., Caten, C.E. (1993) Molecular analysis of the Septoria nodorumβ-tubulin gene and characterization of a benomyl-resistance mutation. Mol. Gen. Genet. 237, 5864.
  • [34]
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 48764882.
  • [35]
    Felsenstein, J. (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5, 164166.
  • [36]
    Fraaije, B.A., Lovell, D.J., Coelho, J.M., Baldwin, S., Hollomon, D.W. (2001) PCR-based assays to assess wheat virietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. Eur. J. Plant Pathol. 107, 905917.
  • [37]
    Radcliffe, P., Hirata, D., Childs, D., Vardy, L., Toda, T. (1998) Identification of novel temperature-sensitive lethal alleles in essential β-tubulin and nonessential α 2-tubulin genes as fission yeast polarity mutants. Mol. Biol. Cell 9, 17571771.
  • [38]
    Mu, J.H., Bollon, A.P., Sidhu, R.S. (1999) Analysis of beta-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products. Mol. Gen. Genet. 262, 857868.
  • [39]
    Takahashi, M., Matsumoto, S., Iwasaki, S., Hahara, I. (1990) Molecular basis for determining the sensitivity of eucaryotes to the antimitotic drug rhizoxin. Mol. Gen. Genet. 222, 169175.
  • [40]
    Davidse, L.C., Ishii, H.Biochemical and molecular aspects of the mechanisms of action of benzimidazoles, N-phenylcarbamates and N-phenylformamidoximes and the mechanisms of resistance to these compounds in fungi Lyr, H., Ed. Modern selective fungicides: properties, applications, mechanisms of action 1995 Gustav Fischer and Jena 305 322
  • [41]
    Goldman, G.H., Temmerman, W., Jacobs, D., Contreras, R., Van Montagu, M., Herrera-Estrella, A. (1993) A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate. Mol. Gen. Genet. 240, 7380.
  • [42]
    Mukherjee, M., Hadar, R., Mukherjee, P.K., Horwitz, B.A. (2003) Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens. J. Appl. Microbiol. 95, 861867.
  • [43]
    Fraaije, B.A., Lovell, D.J., Rohel, E.A., Hollomon, D.W. (1999) Rapid detection and diagnosis of Septoria tritici epidemics in wheat using a polymerase chain reaction/picogreen assay. J. Appl. Microbiol. 86, 701708.
  • [44]
    McCartney, H.A., Foster, S.J., Fraaije, B.A., Ward, E. (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59, 129142.
  • [45]
    Rohel, E.A., Payne, A.C., Fraaije, B.A., Hollomon, D.W. (2001) Exploring infection of wheat and carbohydrate metabolism in Mycosphaerella graminicola transformants with differentially regulated green fluorescent protein expression. MPMI 14, 156163.
  • [46]
    Rohel, E.A., Laurent, P., Fraaije, B.A., Cavelier, N., Hollomon, D.W. (2002) Quantitative PCR monitoring of the effect of azoxystrobin treatments on Mycosphaerella graminicola epidemics in the field. Pest Manag. Sci. 58, 248254.