• [1]
    Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 71307139.
  • [2]
    Clark, A.G., Shamaan, N.A., Sinclair, M.D., Dauterman, W.C. (1986) Insecticide metabolism by multiple glutathione S-transferases in two strains of the house-fly Musca domestica. Pestic. Biochem. Physiol. 25, 169175.
  • [3]
    Ramage, P.I.N., Rae, G.H., Nimmo, I.A. (1986) Purification and properties of hepatic glutathione S-transferases Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. 83, 2329.
  • [4]
    Di Ilio, C., Aceto, A., Piccolomini, R., Allocati, N., Faraone, A., Cellini, L., Ravagnan, G., Federici, G. (1988) Purification and characterization of three forms of glutathione transferase from Proteus mirabilis. Biochem. J. 255, 971975.
  • [5]
    Tamaki, H., Kumagai, H., Tochikura, T. (1991) Nucleotide sequence of the yeast glutathione S-transferase cDNA. Biochim. Biophys. Acta 1089, 276279.
  • [6]
    Nishida, M., Kong, K.H., Inoue, H., Takahashi, K. (1994) Molecular cloning and site-directed mutagenesis of glutathione S-transferase from Escherichia coli. The conserved tyrosyl residue near the N terminus is not essential for catalysis. J. Biol. Chem. 269, 3253632541.
  • [7]
    Vuilleumier, S., Leisinger, T. (1996) Protein engineering studies of dichloromethane dehalogenase/glutathione S-transferase from Methylophilus sp. strain DM11. Ser12 but not Tyr6 is required for enzyme activity. Eur. J. Biochem. 239, 410417.
  • [8]
    Casalone, E., Allocati, N., Ceccarelli, I., Masulli, M., Rossjohn, J., Parker, M.W., Di Ilio, C. (1998) Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1–1 G-site. FEBS Lett. 423, 122124.
  • [9]
    Favaloro, B., Tamburro, A., Angelucci, S., Luca, A.D., Melino, S., Di Ilio, C., Rotilio, D. (1998) Molecular cloning, expression and site-directed mutagenesis of glutathione S-transferase from Ochrobactrum anthropi. Biochem. J. 335 (Pt 3), 573579.
  • [10]
    Allocati, N., Masulli, M., Casalone, E., Santucci, S., Favaloro, B., Parker, M.W., Di Ilio, C. (2002) Glutamic acid-65 is an essential residue for catalysis in Proteus mirabilis glutathione S-transferase B1–1. Biochem. J. 363, 189193.
  • [11]
    Vuilleumier, S. (1997) Bacterial glutathione S-transferases: What are they good for. J. Bacteriol. 179, 14311441.
  • [12]
    Dragani, B., Stenberg, G., Melino, S., Petruzzelli, R., Mannervik, B., Aceto, A. (1997) The conserved N-capping box in the hydrophobic core of glutathione S-transferase P1–1 is essential for refolding: identification of a buried and conserved hydrogen bond important for protein stability. J. Biol. Chem. 272, 2551825523.
  • [13]
    Aceto, A., Dragani, B., Melino, S., Allocati, N., Masulli, M., Di Ilio, C., Petruzzelli, R. (1997) Identification of an N-capping box that affects the α 6-helix propensity in glutathione S-transferase superfamily proteins: a role for an invariant aspartic residue. Biochem. J. 322, 229234.
  • [14]
    Wongtrakul, J., Udomsinprasert, R., Ketterman, A.J. (2003) Non-active site residues Cys69 and Asp150 affected the enzymatic properties of glutathione S-transferase AdGSTD3–3. Insect Biochem. Molec. Biol. 33, 971979.
  • [15]
    Bopp, L.H. (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1, 2329.
  • [16]
    Hofer, B., Eltis, L.D., Dowling, D.N., Timmis, K.N. (1993) Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130, 4755.
  • [17]
    Hofer, B., Backhaus, S., Timmis, K.N. (1994) The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144, 916.
  • [18]
    Bartels, F., Backhaus, S., Moore, E.R.B., Timmis, K.N., Hofer, B. (1999) Occurrence and expression of glutathione-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology 145, 28212834.
  • [19]
    Gilmartin, N., Ryan, D., Sherlock, O., Dowling, D. (2003) BphK shows dechlorination activity against 4-chlorobenzoate, an end product of bph-promoted degradation of PCBs. FEMS Microbiol. Lett. 222, 251255.
  • [20]
    Habig, W.H., Jakoby, W.B. (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77, 398405.
  • [21]
    Van de Tweel, W.J., Kok, J.B., de Bont, J.A. (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4- iodobenzoate by Alcaligenes denitrificans NTB-1. Appl. Environ. Microbiol. 53, 810815.
  • [22]
    Bergmann, J.G., Sanik, J. (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29, 241243.
  • [23]
    Guex, N., Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 27142723.
  • [24]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.