• [1]
    Wisselink, H.W., Weusthuis, R.A., Eggink, G., Hugenholtz, J., Grobben, G.J. (2002) Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12, 151161.
  • [2]
    Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S.D., Sorokin, A. (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 5, 731753.
  • [3]
    Yebra, M.J., Pérez-Martínez, G. (2002) Cross-talk between the l-sorbose and d-sorbitol (d-glucitol) metabolic pathways in Lactobacillus casei. Microbiology 148, 23512359.
  • [4]
    Ferain, T., Schanck, A.N., Delcour, J. 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum J. Bacteriol. 178 1996 7311 7315
  • [5]
    Neves, A.R., Ramos, A., Shearman, C., Gasson, M.J., Almeida, J.S., Santos, H. (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C NMR. Eur. J. Biochem. 267, 38593868.
  • [6]
    Neves, A.R., Ventura, R., Mansour, N., Shearman, C., Gasson, M.J., Maycock, C., Ramos, A., Santos, H. (2002) Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD+ and NADH pools determined in vivo by 13C NMR. J. Biol. Chem. 277, 2808828098.
  • [7]
    Gaspar, P., Neves, A.R., Ramos, A., Gasson, M.J., Shearman, C.A., Santos, H. (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl. Environ. Microbiol. 70, 14661474.
  • [8]
    Matsuzaki, T., Chin, J. (2000) Modulating immune responses with probiotic bacteria. Immunol. Cell. Biol. 78, 6773.
  • [9]
    Pedone, C.A., Arnaud, C.C., Postaire, E.R., Bouley, C.F., Reinert, P. (2000) Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int. J. Clin. Pract. 54, 568571.
  • [10]
    Wagner, R.D., Pierson, C., Warner, T., Dohnalek, M., Hilty, M., Balish, E. (2000) Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice. J. Food. Prot. 63, 638644.
  • [11]
    Alvarez, S., Herrero, C., Bru, E., Perdigón, G. (2001) Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J. Food Prot. 64, 17681770.
  • [12]
    Forestier, C., de Champs, C., Vatoux, C., Joly, B. (2001) Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152, 167173.
  • [13]
    Yebra, M.J., Veyrat, A., Santos, M.A., Pérez-Martínez, G. (2000) Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J. Bacteriol. 182, 155163.
  • [14]
    Monedero, V., Gosalbes, M.J., Pérez-Martínez, G. (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J. Bacteriol. 179, 66576664.
  • [15]
    Gosalbes, M.J., Monedero, V., Alpert, C.-A., Pérez-Martínez, G. (1997) Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol. Lett. 148, 8389.
  • [16]
    Gosalbes, M.J., Monedero, V., Pérez-Martínez, G. (1999) Elements involved in catabolite repression and substrate induction of lactose operon in Lactobacillus casei. J. Bacteriol. 181, 39283934.
  • [17]
    Posno, M., Leer, R.J., Van Luijk, N., Van Giezen, M.J.F., Heuvelmans, P.T., Lokman, B.C., Pouwels, P.H. (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57, 18221828.
  • [18]
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, Cold Spring Harbor Laboratory, New York.
  • [19]
    Bergmeyer, H.U., Grassl, M., Walter, H.E. Bergmeyer, H.U., Ed. Methods of enzymatic analysis vol. 2 1983 VCH Weinheim W. Germany-Deerfield Beach FL 309 310
  • [20]
    Kunks, A., Draeger, B., Ziegenhom, J. Bergmeyer, H.U., Ed. Methods of enzymatic analysis vol. 6 1984 VCH Weinheim W. Germany-Deerfield Beach FL 163 172
  • [21]
    Gosalbes, M.J., Esteban, C.D., Galán, J.L., Pérez-Martínez, G. (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl. Environ. Microbiol. 66, 48224828.
  • [22]
    Alpert, C.-A., Siebers, U. (1997) The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J. Bacteriol. 179, 15551562.
  • [23]
    Wisselink, H.W., Mars, A.E., Van der Meer, P., Eggink, G., Hugenholtz, J. (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl. Environ. Microbiol. 70, 42864292.
  • [24]
    Viana, R., Yebra, M.J., Galán, J.L., Monedero, V., Pérez-Martínez, G. (2005) Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res. Microbiol. 156, 641649.
  • [25]
    Garrigues, C., Loubiere, P., Lindley, N.D., Cocaign-Bousquet, M. (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 52825287.
  • [26]
    Hols, P., Ramos, A., Hugenholtz, J., Delcour, J., Vos, W.M., Santos, H., Kleerebezem, M. (1999) de Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J. Bacteriol. 181, 55215526.
  • [27]
    Jensen, N.B., Melchiorsen, C.R., Jokumsen, K.V., Villadsen, J. (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67, 26772682.
  • [28]
    Neves, A.R., Ramos, A., Costa, H., Van Swam, I.I., Hugenholtz, J., Kleerebezem, M., de Vos, W.M., Santos, H. (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl. Environ. Microbiol. 68, 63326342.
  • [29]
    Leloup, L., Ehrlich, S.D., Zagorec, M., Morel-Deville, F. (1997) Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl. Environ. Microbiol. 63, 21172123.