• [1]
    O' Connor, K., Dobson, A.D.W., Hartmans, S. (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63, 42874291.
  • [2]
    Panke, S., Witholt, B., Schmid, A., Wubbolts, M.G. (1998) Towards a biocatalyst for (S)-styrene oxide production: characterisation of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64, 20322043.
  • [3]
    Di Gennaro, P., Colmegna, A., Galli, E., Sello, G., Pelizzoni, F., Bestetti, G. (1999) A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 65, 27942797.
  • [4]
    Wackett, L.P., Hershberger, C.D. (2001) Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds. American Society for Microbiology Press, Washington, DC.
  • [5]
    Allen, C.C.R., Boyd, D.R., Larkin, M.J., Reid, K.A., Sharma, N.D., Wilson, K. (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl. Environ. Microbiol. 63, 151155.
  • [6]
    Ensley, B.D., Ratzkin, B.J., Ossulund, T.D., Simon, M.J., Wackett, L.P., Gibson, D.T. (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 22, 167169.
  • [7]
    McClay, K., Fox, B.G., Steffan, R.J. (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl. Environ. Microbiol. 66, 18771882.
  • [8]
    O' Connor, K., Buckley, C.M., Hartmans, S., Dobson, A.D.W. (1995) Possible regulatory role for non-aromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 61, 544548.
  • [9]
    O' Leary, N.D., O' Connor, K.E., Duetz, W., Dobson, A.D.W. (2001) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147, 973979.
  • [10]
    O' Leary, N., Duetz, W.A., Dobson, A.D.W., O' Connor, K.E. (2002) Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient limiting continuous culture conditions. FEMS Microbiol. Lett. 208, 263268.
  • [11]
    Vogel, H.J., Bonner, D.M. (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J. Biol. Chem. 218, 97106.
  • [12]
    de Lorenzo, V., Herrero, M., Jakubzik, U., Timmis, K.N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 65686572.
  • [13]
    Duetz, W.A., Ruedi, L., Hermann, R., O'Connor, K., Buchs, J., Witholt, B. (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 26412646.
  • [14]
    Boyd, D.R., Sharma, N.D., Allen, C.C.R. (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564573.
  • [15]
    Boyd, D.R., Sharma, N.D., Bowers, N.I., Boyle, R., Harrison, J.S., Lee, K., Bugg, T.D., Gibson, D.T. (2003) Stereochemical and mechanistic aspects of dioxygenase-catalysed benzylic hydroxylation of indene and chromane substrates. Org. Biomol. Chem. 1, 12981307.
  • [16]
    O'Brien, X.M., Parker, J.A., Lessard, P.A., Sinskey, A.J. (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl. Microbiol. Biotechnol. 59, 389399.
  • [17]
    Stafford, D.E., Yanagimachi, K.S., Stephanopoulos, G. (2001) Metabolic engineering of indene bioconversion in Rhodococcus sp. Adv. Biochem. Eng. Biotechnol. 73, 85101.
  • [18]
    Wackett, L.P., Kwart, L.D., Gibson, D.T. (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry 27, 13601367.
  • [19]
    Priefert, H., O'Brien, X.M., Lessard, P.A., Dexter, A.F., Choi, E.E., Tomic, S., Nagpal, G., Cho, J.J., Agosto, M., Yang, L., Treadway, S.L., Tamashiro, L., Wallace, M., Sinskey, A.J. (2004) Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl. Microbiol. Biotechnol. 65, 168176.
  • [20]
    Fedorak, P.M., Grbić-Galić, D. (1991) Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl. Environ. Microbiol. 57, 932940.
  • [21]
    May, S.W., Steltenkamp, M.S., Schwartz, R.D., McCoy, C.J. (1976) Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans. J. Am. Chem Soc. 98, 78567858.
  • [22]
    Hartmans, S., Smits, J.P., Van der Werf, M.J., Volkering, J., de Bont, J.A.M. (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl. Environ. Microbiol. 55, 28502855.
  • [23]
    Martin, W.R., Foster, J.W. (1955) Production of trans-l-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartartic acid. J. Bacteriol. 70, 405414.
  • [24]
    Weijers, C.A.G.M., Jongejan, H., Franssen, M.C.R., de Groot, A., de Bont, J.A.M. (1995) Dithiol and NAD-dependent degradation of epoxyalkanes by Xanthobacter PY2. Appl. Microbiol. Biotechnol. 42, 775781.
  • [25]
    Orru, R.V.A., Faber, K. (1999) Stereoselectivities of microbial epoxide hydrolases. Curr. Opin. Chem. Biol. 3, 1621.
  • [26]
    Allen, J.R., Ensign, S.A. (2003) Aliphatic epoxide carboxylation. Annu. Rev. Biochem. 72, 5576.