• [1]
    Distel, D.L. (1998) Evolution of chemoautotrophic endosymbioses in bivalves. BioScience 48, 277286.
  • [2]
    Fisher, C.R. (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399436.
  • [3]
    Naganuma, T., Kato, C., Hirayama, H., Moriyama, N., Hashimoto, J., Horikoshi, K. (1997) Intracellular occurrence of e-proteobacterial 16S rDNA sequences in the vestimentiferan trophosome. J. Oceanogr. 53, 193197.
  • [4]
    Dubilier, N., Mulders, C., Ferdelman, T., de Beer, D., Pernthaler, A., Klein, M., Wagner, M., Erseus, C., Thiermann, F., Krieger, J., Giere, O., Amann, R. (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411, 298302.
  • [5]
    Suzuki, Y., Sasaki, T., Suzuki, M., Nogi, Y., Miwa, T., Takai, K., Nealson, K.H. and Horikoshi, K. (2005) Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl. Environ. Microbiol. 71, in press.
  • [6]
    Waren, A., Bouchet, P. (2001) Gastropoda and monoplacophora from hydrothermal vents and seeps; new taxa and records. The Veliger 44, 116231.
  • [7]
    Stein, J.L., Cary, S.C., Hessler, R.R., Ohta, S., Vetter, R.D., Childress, J.J., Felbeck, H. (1988) Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull. 174, 373378.
  • [8]
    Kojima, S., Segawa, R., Fujiwara, Y., Fujikura, K., Ohta, S., Hashimoto, J. (2001) Phylogeny of hydrothermal-vent-endemic gastropods Alviniconcha spp. from the western Pacific revealed by mitochondrial DNA sequences. Biol. Bull. 200, 298304.
  • [9]
    Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics (Stackebrandt, E., Goodfellow, M., Eds.), pp.115–175 Wiley, New York.
  • [10]
    Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H. Yadhukumar Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.H. (2004) ARB a software environment for sequence data. Nucleic Acids Res. 32, 13631371.
  • [11]
    Swofford, D.L. (1999) PAUP∗: Phylogenetic Analysis Using Parsimony (∗ and Other Methods), Version 4.02. Sinauer Associates, Sunderland, MA.
  • [12]
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Basic local alignment search tool. Nucleic Acids Res. 25, 33893402.
  • [13]
    Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., Tiedje, J.M. (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31, 442443.
  • [14]
    Giovannoni, S.J., DeLong, E.F., Olsen, G.J., Pace, N.R. (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170, 720726.
  • [15]
    Lathe, R.Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations J. Mol. Biol. 183 1985
  • [16]
    Komagata, K., Suzuki, K. (1987) Lipid and cell-wall analysis in bacterial systematics. Method. Microbiol. 19, 161207.
  • [17]
    Van Dover, C.L., Fry, B. (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar. Biol. 102, 257263.
  • [18]
    Ackman, R.G., Hooper, S.N. (1973) Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp. Biochem. Phys. 46B, 153165.
  • [19]
    Gardner, D., Riley, J.P. (1972) The component fatty acids of the lipids of some species of marine and freshwater molluscs. J. Mar. Biol. Assoc. UK 52, 827838.
  • [20]
    Pranal, V., FialaMedioni, A., Guezennec, J. (1997) Fatty acid characteristics in two symbiont-bearing mussels from deep-sea hydrothermal vents of the south-western Pacific. J. Mar. Biol. Assoc. UK 77, 473492.
  • [21]
    Pranal, V., FialaMedioni, A., Guezennec, J. (1996) Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the west Pacific. Mar. Ecol. Prog. Ser. 142, 175184.
  • [22]
    Conway, N., Capuzzo, J.M. (1991) Incorporation and utilization of bacterial lipids in the Solemya velum symbiosis. Mar. Biol. 108, 277291.
  • [23]
    Conway, N.M., Howes, B.L., McDowell Capuzzo, J.E., Turner, R.D., Cavanaugh, C.M. (1992) Characterization and site description of Solemya borealis (Bivalvvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 610613.
  • [24]
    Hayes, J.M.Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes Vally, J., Cole, D., Eds. Stable Isotope Geochemistry Vol. 43 2001 Mineralogical Society of America Washington, DC 225 277
  • [25]
    Pancost, R., Sinninghe Damste, J.S. (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem. Geol. 195, 2958.
  • [26]
    Rau, G.H. (1981) Hydrothermal vent clam and tube worm 13C/12C: Further evidence of non-photosynthetic food sources. Science 213, 338340.
  • [27]
    Van Dover, C.L. (2000) The Ecology of Deep-sea Hydrothermal Vents. Princeton University Press, Princeton, NJ.