• [1]
    Fawe, A., Menzies, J.G., Chérif, M., Bélanger, R.R. (2001) Silicon and disease resistance in dicotyledons. In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H., Korndöfer, G.H., Eds.), pp.159–170 Elsevier, Amsterdam.
  • [2]
    Exley, C. (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J. Biol. Inorg. Chem. 69, 139144.
  • [3]
    Lowenstam, H.A. (1981) Minerals formed by organisms. Science 211, 11261131.
  • [4]
    Das, S., Chattopadhyay, U.K. (2000) Role of silicon in modulating the internal morphology and growth of Mycobacterium tuberculosis. Ind. J. Tub. 47, 8791.
  • [5]
    Wainwright, M., Al-Wajeeh, K., Grayston, S.J. (1997) Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycol. Res. 101, 933938.
  • [6]
    Martin-Jézéquel, V., Hilderbrand, M., Brzezinski, M.A. (2000) Silicon metabolism in diatoms: implications for growth. J. Phycol. 36, 821840.
  • [7]
    Carlisle, E.M. (1988) Silicon as a trace nutrient. Sci. Total. Environ. 73, 95106.
  • [8]
    Carlisle, E.M. (1997) Silicon. In: Handbook of Nutritionally Essential Mineral Elements (O'Dell, B.L., Sunde, R.A., Eds.), pp.603–618 Marcel Dekker, New York.
  • [9]
    Nielsen, F.H. (1998) Ultratrace elements in nutrition: current knowledge and speculation. J. Trace Elem. Exp. Med. 11, 251274.
  • [10]
    Nielsen, F.H. (1991) Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J. 5, 26612667.
  • [11]
    Seaborn, C.D., Briske-Anderson, M., Nielsen, F.H. (2002) An interaction between dietary silicon and arginine affects immune function indicated by con-A-induced DNA synthesis of rat splenic T-lymphocytes. Biol. Trace Elem. Res. 87, 133142.
  • [12]
    Knight, C.T.G., Kinrade, S.D. (2001) A primer on the aqueous chemistry of silicon. In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H., Korndöfer, G.H., Eds.), pp.57–84 Elsevier, Amsterdam.
  • [13]
    Ingri, N. (1978) Aqueous silicic acid, silicates and silicate complexes. In: Biochemistry of Silicon and Related Problems (Bendz, G., Lindquist, I., Eds.), pp.3–50 Plenum, New York.
  • [14]
    Bond, R., McAuliffe, J.C. (2003) Silicon biotechnology: new opportunities for carbohydrate science. Aust. J. Chem. 56, 711.
  • [15]
    Kinrade, S.D., Del Nin, J.W., Schach, A.S., Sloan, T.A., Wilson, K.L., Knight, C.T. (1999) Stable five- and six-coordinated silicate anions in aqueous solution. Science 285, 15421545.
  • [16]
    Kinrade, S.D., Hamilton, R.J., Schach, A.S., Knight, C.T.G.Aqueous hypervalent silicon complexes with aliphatic sugar acids J. Chem. Soc. Dalton Trans. 2001 961 963
  • [17]
    Kinrade, S.D., Gillson, A.M.E., Knight, C.T.G. (2002) Si-29 NMR evidence of a transient hexavalent silicon complex in the diatom Navicula pelliculosa. J. Chem. Soc. Dalton Trans. 3, 307309.
  • [18]
    Reeves, C.D., Volcani, B.E. (1984) Role of silicon in diatom metabolism. Patterns of protein phosphorylation in Cylindrotheca fusiformis during recovery from silicon starvation. Arch. Microbiol. 13, 291294.
  • [19]
    Trevors, J.T. (1997) Bacterial evolution and silicon. Antonie Van Leeuwenhoek 71, 271276.
  • [20]
    Epstein, E. (1994) The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91, 1117.
  • [21]
    Epstein, E. (1999) Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641664.
  • [22]
    Epstein, E. (2001) Silicon in plants: facts vs. concepts. In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H., Korndöfer, G.H., Eds.), pp.1–16 Elsevier, Amsterdam.
  • [23]
    Nishimura, K., Miyaki, Y., Takahashi, E. (1989) On silicon, aluminium, and zinc accumulators discriminated from 147 species of Angiospermae. Mem. Coll. Agric. Kyoto Univ. 133, 2343.
  • [24]
    Jones, L.H.P., Handreck, K.A. (1967) Silica in soils, plants, and animals. Adv. Agron. 19, 107149.
  • [25]
    Hildebrand, M., Dahlin, K., Volcani, B.E. (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260, 480486.
  • [26]
    Ma, J.F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., Yano, M. (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol. 136, 32843289.
  • [27]
    Neumann, D., de Figueiredo, C. (2002) A novel mechanism of silicon uptake. Protoplasma 220, 5967.
  • [28]
    Sangster, A.G., Hodson, M.J., Tubb, H.J. (2001) Silicon deposition in higher plants. In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H., Korndöfer, G.H., Eds.), pp.85–114 Elsevier, Amsterdam.
  • [29]
    Perry, C.C., Keeling-Tucker, T. (2000) Biosilicification: the role of the organic matrix in structure control. J. Biol. Inorg. Chem. 5, 537550.
  • [30]
    Harrison, C.C. (1996) Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry 41, 3742.
  • [31]
    Kolesnikov, M.P., Gins, V.K. (2001) Forms of silicon in medicinal plants. Applied Biochemistry and Microbiology 37, 524527.
  • [32]
    Okuda, A., Takahashi, E.The role of silicon The Mineral Nutrition of the Rice Plant 1965 John Hopkins Press Baltimore 123 146
  • [33]
    Yoshi, H. (1941) Studies on the nature of rice blast resistance. Kyusu. Imp. Univ. Sci. Fakultato Terkultura Bull. 9, 277307.
  • [34]
    Carver, T.L.W., Zeyen, R.J., Ahlstrand, G.G. (1987) The relationship between insoluble silicon and success or failure of attempted primary penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiol. Mol. Plant Pathol. 31, 133148.
  • [35]
    Kunoh, H., Ishizaki, H. (1975) Silicon levels near penetration sites of fungi on wheat, barley, cucumber and morning glory leaves. Physiol. Plant. Pathol. 5, 283287.
  • [36]
    Kim, S.G., Kim, K.W., Park, E.W., Choi, D. (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92, 10951103.
  • [37]
    Blaich, R., Grundhöfer, H. (1998) Silicate incrusts induced by powdery mildew in cell walls of different plant species. J. Plant Dis. Protect. 105, 114120.
  • [38]
    Chérif, M., Benhamou, N., Menzies, J.G., Bélanger, R.R. (1992) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 41, 411425.
  • [39]
    Samuels, A.L., Glass, A.D.M., Ehret, D.L., Menzies, J.G. (1991) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ. 14, 485492.
  • [40]
    Chérif, M., Menzies, J.G., Benhamou, N., Bélanger, R.R. (1992) Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiol. Mol. Plant Pathol. 41, 371385.
  • [41]
    Chérif, M., Asselin, A., Bélanger, R.R. (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84, 236242.
  • [42]
    Fawe, A., Abou-Zaid, M., Menzies, J.G., Bélanger, R.R. (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88, 396401.
  • [43]
    Bélanger, R.R., Benhamou, N., Menzies, J.G. (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93, 402412.
  • [44]
    Rodrigues, F.A., Benhamou, N., Datnoff, L.E., Jones, J.B., Bélanger, R.R. (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93, 535546.
  • [45]
    Rodrigues, F.A., McNally, D.J., Datnoff, L.E., Jones, J.B., Labbé, C., Benhamou, N., Menzies, J.G., Bélanger, R.R. (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94, 177183.
  • [46]
    Ghanmi, D., McNally, D.J., Benhamou, N., Menzies, J.G., Bélanger, R.R. (2004) Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiol. Mol. Plant Pathol. 64, 189199.
  • [47]
    Hutcheson, S.W. (1998) Current concepts of active defense in plants. Annu. Rev. Phytopathol. 36, 5990.
  • [48]
    Zhang, S., Klessig, D.F. (1997) Salycilic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9, 809824.
  • [49]
    Kumar, D., Klessig, D.F. (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol. Plant Microbe Interact. 13, 347351.
  • [50]
    Romeis, T., Piedras, P., Jones, J.D.G. (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12, 803816.
  • [51]
    Romeis, T., Ludwig, A.A., Martin, R., Jones, J.D. (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 20, 55565567.
  • [52]
    Gupta, R., Luan, S. (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132, 11491152.
  • [53]
    Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97, 29402945.
  • [54]
    Wan, J., Zhang, S., Syacey, G. (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol. Plant Pathol. 20, 55565567.
  • [55]
    Nürnberger, T., Scheel, D. (2001) Signal transmission in the plant immune response. Trends Plant Sci. 6, 372379.
  • [56]
    Zhang, S., Klessig, D.F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520527.
  • [57]
    Tena, G., Tsuneaki, A., Chiu, W.L., Sheen, J. (2001) Plant mitogen activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392400.
  • [58]
    Morris, P.C. (2001) MAP kinase signal transduction pathways in plants. New Phytol. 151, 6789.
  • [59]
    Hall, A.D., Morison, C.G. (1906) On the function of silicon in the nutrition of cereals. Proc. Roy. Soc. London B 77, 455477.
  • [60]
    Ma, J.F., Takahashi, E. (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126, 115119.
  • [61]
    Ma, J.F., Miyake, Y., Takahashi, E. (2001) Silicon as a beneficial effect for crop plants. In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H., Korndöfer, G.H., Eds.), pp.17–40 Elsevier, Amsterdam.
  • [62]
    Louie, A.Y., Meade, T.J. (1999) Metal complexes as enzyme inhibitors. Chem. Rev. 99, 27112734.