• [1]
    Bayer, E.A., Shoham, Y., Lamed, R.Cellulose-decomposing bacteria and their enzyme systems Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community third ed. 2000 Springer Verlag New York
  • [2]
    Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506577.
  • [3]
    Irwin, D., Shin, D.H., Zhang, S., Barr, B.K., Sakon, J., Karplus, P.A., Wilson, D.B. (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol. 180, 17091714.
  • [4]
    Schwarz, W.H., Zverlov, V.V., Bahl, H. (2004) Extracellular glycosyl hydrolases from clostridia. Adv. Appl. Microbiol. 56, 215261.
  • [5]
    Zverlov, V.V., Kellermann, J. and Schwarz, W. H. (2005) Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics, vol. 5., doi:10.1002/pmic.2004.01.199.
  • [6]
    Schwarz, W.H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634649.
  • [7]
    Kruus, K., Wang, W.K., Ching, J., Wu, J.H. (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J. Bacteriol. 177, 16411644.
  • [8]
    Riedel, K., Bronnenmeier, K. (1998) Intramolecular synergism in an engineered exo-endo-1,4-β-glucanase fusion protein. Mol. Microbiol. 28, 767775.
  • [9]
    Irwin, D.C., Zhang, S., Wilson, D.B. (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermomonospora fusca. Eur. J. Biochem. 267, 49884997.
  • [10]
    Zverlov, V.V., Mahr, S., Riedel, K., Bronnenmeier, K. (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144, 457465.
  • [11]
    Perret, S., Maamar, H., Belaich, J.P., Tardif, C. (2004) Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol. Microbiol. 51, 599607.
  • [12]
    Zhang, Y-H.P., Lynd, L. (2004) Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl. Environ. Microbiol. 70, 15631569.
  • [13]
    Zhang, Y-H.P., Lynd, L.R. (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. USA 102, 73217325.
  • [14]
    Shoham, Y., Lamed, R., Bayer, E.A. (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7, 275281.
  • [15]
    Johnson, E.A., Madia, A., Demain, A.L. (1982) Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl. Environ. Microbiol. 41, 10601062.
  • [16]
    Schwarz, W.H., Gräbnitz, F., Staudenbauer, W.L. (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl. Environ. Microbiol. 51, 12931299.
  • [17]
    Wood, T.M., Bhat, K.M. (1988) Methods for measuring cellulase activities. Meth. Enzymol. 160, 87112.
  • [18]
    Sedmak, J.J., Grossberg, S.E. (1977) A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 15, 160167.
  • [19]
    Zverlov, V.V., Velikodvorskaya, G.A., Schwarz, W.H. (2003) Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149, 515524.
  • [20]
    Riedel, K., Ritter, J., Bauer, S., Bronnenmeier, K. (1998) The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiol. Lett. 164, 261267.
  • [21]
    Belaich, A., Parsiegla, G., Gal, L., Villard, C., Haser, R., Belaich, J.-P. (2002) Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J. Bacteriol. 184, 13781384.
  • [22]
    Gilad, R., Rabinovich, L., Yaron, S., Bayer, E.A., Lamed, R., Gilbert, H.J., Shoham, Y. (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol. 185, 391398.
  • [23]
    Beguin, P., Cornet, P., Aubert, J.P. (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162, 102105.
  • [24]
    Kataeva, I., Li, X.L., Chen, H., Choi, S.K., Ljungdahl, L.G. (1999) Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J. Bacteriol. 181, 52885295.
  • [25]
    Zverlov, V.V., Velikodvorskaya, G., Schwarz, W.H., Bronnenmeier, K., Kellermann, J., Staudenbauer, W. (1998) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J. Bacteriol. 180, 30913099.
  • [26]
    Zverlov, V.V., Velikodvorskaya, G.A., Schwarz, W.H., Kellermann, J., Staudenbauer, W.L. (1999) Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5. Appl. Microbiol. Biotechnol. 51, 852859.
  • [27]
    Zhang, Y.H., Lynd, L.R. (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 187, 99106.